2020 Spring Algebra Prelim

March, 2020

INSTRUCTIONS: Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Please start each solution on a new page and submit your solutions in order.

Notation

 \mathbb{Z} the commutative ring of integers.

 \mathbb{Q} the field of rational numbers.

 $\mathbb{F}_p = \mathbb{Z}/(p)$ the field of p elements where p is a prime.

1. Recall that two $n \times n$ matrices A and B over a field are similar if there is an invertible $n \times n$ matrix Q so that

$$A = QBQ^{-1}.$$

A partition of a positive integer n is a sequence of positive integers $n_1 \ge n_2 \ge \cdots \ge n_k$ so that

$$n_1 + n_2 + \cdots + n_k = n.$$

Let P(n) be the number of distinct partitions of n. For example, P(4) = 5. Prove that up to similarity of matrices, there are exactly P(n) $n \times n$ matrices A so that $A^n = 0$ (same n).

2. Describe the Galois group and the intermediate fields of the cyclotomic extension $\mathbb{Q}(\zeta_{12})/\mathbb{Q}$.

3.

- (a) Prove that $\mathbb{Z}[x]/(2x-1, x^7-1) \cong \mathbb{Z}/(127)$.
- (b) Prove that $\mathbb{Z}[i]/(2i-3) \cong \mathbb{F}_{13}$.
- 4. Let G be the group of matrices of the form $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ with entries in the field \mathbb{F}_p .
 - (a) Prove that G is nonabelian.
 - (b) Suppose p is old. Prove that $g^p = I_3$ for all $g \in G$.
 - (c) Suppose that p = 2. It is known that there are exactly two nonabelian groups of order 8, up to isomorphism: the dihedral group D_4 and the quaternion group. Assuming this fact without proof, determine which of these groups G is isomorphic to.
- 5. Let \mathbb{F} be a field and let \mathbb{F}^{\times} denote the group of nonzero elements of \mathbb{F} . Show that every finite subgroup of \mathbb{F}^{\times} is cyclic.

6.

- (a) Let R be a commutative ring with identity which is Noetherian. Let M be a finitely generated R-module, and let $f: M \to M$ be an onto R-homomorphism. Prove that f is an isomorphism.
- (b) Give an example showing that without the assumption that M is finitely generated, an onto R-homomorphism $f:M\to M$ is not necessarily an isomorphism.
- 7. Let G be a finite group, \mathbb{F} an algebraically closed field, and V an irreducible \mathbb{F} -linear representation of G.
 - (a) Show that $\operatorname{Hom}_{\mathbb{F}G}(V,V)$ is a division algebra with \mathbb{F} in its center.
 - (b) Show that V is finite-dimensional over \mathbb{F} , and conclude that $\operatorname{Hom}_{\mathbb{F} G}(V,V)$ is also finite-dimensional.
 - (c) Show the inclusion $\mathbb{F} \to \operatorname{Hom}_{\mathbb{F}G}(V, V)$ found in (a) is an isomorphism. (For $f \in \operatorname{Hom}_{\mathbb{F}G}(V, V)$, view f as a linear transformation and consider $f \alpha I$, where α is an eigenvalue of f.)
 - 8. Suppose that R is a ring. Consider an exact sequence of R-modules:

$$(*) 0 \to M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \to 0$$

(Recall that "exactness" means that f is injective, g is surjective, and $\ker(g) = \operatorname{im}(f)$.) We say that the exact sequence (*) splits if there is an R-module homomorphism $h: M_3 \to M_2$ such that $g \circ h: M_3 \to M_3$ is the identity map.

- (a) Prove that if the exact sequence (*) splits, then M_2 is isomorphic to the direct sum $M_1 \oplus M_3$.
- (b) Suppose R is the polynomial ring $\mathbb{C}[x,y]$ in two indeterminates x and y. Give an example of an exact sequence (*) of R-modules which does not split.
- (c) Suppose that R is a commutative integral domain and that every exact sequence (*) of R-modules splits. Prove that R is a field.