2018 Algebra Prelim

September 10, 2018

INSTRUCTIONS: Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it. Please start each solution on a new page and submit your solutions in order.

- 1. Show that no finite group is the union of conjugates of a proper subgroup.
- 2. Classify all groups of order 18 up to isomorphism.
- 3. Let α, β denote the unique positive real 5th root of 7 and 4th root of 5, respectively. Determine the degree of $\mathbb{Q}[\alpha, \beta]$ over \mathbb{Q} .
- 4. Show that the field extension $\mathbb{Q} \subset \mathbb{Q}[\sqrt{2+\sqrt{2}}]$ is Galois and determine its Galois group.
- 5. Let M be a square matrix over a field K. Use a suitable canonical form to show that M is similar to its transpose M^T .
- 6. Let R be a commutative ring and M be an R-module.
- (a) Show that M=0 if and only if the localization $M_{\mathfrak{m}}=0$ for all maximal ideals \mathfrak{m} of R.
- (b) Find an example of a local ring R with maximal ideal \mathfrak{m} and a nonzero R-module M such that $M/\mathfrak{m}M=0$.
- 7. Let G be a finite group and π, π' be two irreducible representations of G. Prove or disprove the following assertion: π and π' are equivalent if and only if det $\pi(g) = \det \pi'(g)$ for all $g \in G$.
- 8. Let K be a field and $R = K[x]/(x^2)$. For each integer $i \ge 0$, compute
- (a) $\operatorname{Ext}_R^i(R,R/(x))$
- (b) $\operatorname{Ext}_R^i(R/(x), R)$
- (c) $\operatorname{Ext}_R^i(R/(x), R/(x))$.