TOPOLOGY AND GEOMETRY OF MANIFOLDS PRELIMINARY EXAM

March 27, 2019

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Please start each solution on a new page and submit your solutions in order.

Note: Unless otherwise stated, all manifolds are smooth, connected, and without boundary.

- (1) Represent the Möbius strip as the quotient space of the square $[-1,1] \times [-1,1]$ by identifying (1,y) with (-1,-y) for $-1 \leq y \leq 1$. Its boundary (as a manifold with boundary) is the image of the set $\{(x,y) \in [-1,1] \times [-1,1] : |y|=1\}$ under the quotient map. Prove that there does not exist a retraction from the Möbius strip to its boundary.
- (2) Let G be a Lie group with identity e. Prove that there exists a neighborhood U of e such that each element of U has a unique square root in U (i.e. prove that for each $x \in U$ there exists a unique $v \in U$ with $v^2 = x$.

Hint: You will likely need to make use of properties of the exponential map.

- (3) Prove that every bounded vector field on \mathbb{R}^n is complete.
- (4) Find, with proof, all values of $c \in \mathbb{R}$ so that the locus

$$L_c = \{(x, y) \in \mathbb{R}^2 : y^2 = (x^2 - 1)(x - c)\}$$

is an embedded submanifold of \mathbb{R}^2 .

(5) Let $\pi: E \to X$ be a covering map and let $f: Y \to X$ be continuous, where Y is a topological space which is path connected and locally path connected. Set

$$\widetilde{E} = \{(y, e) \in Y \times E : f(y) = \pi(e)\}$$

with the topology induced from the product topology on $Y \times E$. Define $\widetilde{\pi}: \widetilde{E} \to Y$ by

$$\widetilde{\pi}(y,e) = y.$$

Show that if \widetilde{E} is connected, then $\widetilde{\pi}$ is a covering map.

(6) Let $\{(u, v, x, y)\}$ be coordinates on \mathbb{R}^4 . Show that there are smooth functions, f_1 and f_2 , defined in a neighborhood of 0, with $df_1 \wedge df_2$ nowhere vanishing, and satisfying the system of differential equations

$$\frac{\partial f_j}{\partial x} + y \frac{\partial f_j}{\partial u} + x \frac{\partial f_j}{\partial v} = 0, \qquad \frac{\partial f_j}{\partial y} + x \frac{\partial f_j}{\partial u} + y \frac{\partial f_j}{\partial v} = 0$$

for j = 1, 2.

- (7) Suppose that M is a 2n-dimensional manifold that admits a symplectic structure. The latter means that there is a closed differential 2-form ω such that $\omega^n = \omega \wedge \cdots \wedge \omega$ is nonzero everywhere on M.
 - (a) Show that the even-dimensional deRham cohomology groups $H_{dR}^{2k}(M)$, $k = 1, \ldots, n$, are nontrivial.
 - (b) Show that the only sphere that admits a symplectic structure is the 2-dimensional sphere S^2 .
- (8) Let O(n) denote the orthogonal group. A reflection is a non-identity element $A \in O(n)$ that fixes every point in some linear (n-1)-dimensional subspace of \mathbb{R}^n . Let $\mathcal{R}_n \subset O(n)$ denote the subset consisting of all reflections. Show that \mathcal{R}_n is a smooth embedded submanifold and is diffeomorphic to the real projective space \mathbb{RP}^{n-1} . (Suggestion: It might be useful to consider the action of O(n) on itself by conjugation.)