TOPOLOGY AND GEOMETRY OF MANIFOLDS PRELIMINARY EXAM September 13, 2018 Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in. Please start each solution on a new page and submit your solutions in order. **Note:** Unless otherwise stated, all manifolds are smooth, connected, and without boundary. (1) Let M^n be a n-dimensional manifold. Let $1 \leq p \leq n$ and let $\omega_1, \ldots, \omega_p$ be smooth 1-forms on M which are pointwise linearly independent. Suppose that $\theta_1, \ldots, \theta_p$ are smooth 1-forms on M so that $$\sum_{i=1}^{p} \omega_i \wedge \theta_i = 0.$$ Show that there exist $f_{ij} \in C^{\infty}(M)$, $1 \leq i, j \leq p$, so that $$\theta_i = \sum_{i=1}^p f_{ij}\omega_j$$ and $f_{ij} = f_{ji}$. (2) Let M be the set of all straight lines in \mathbb{R}^2 (not necessarily passing through the origin). Show that M can be given the structure of a smooth manifold which is diffeomorphic to \mathbb{RP}^2 with one point removed. (3) Let $\pi: E \to X$ be a covering map and let $f: Y \to X$ be continuous, where Y is a topological space which is path connected and locally path connected. Set $$\widetilde{E} = \{(y, e) \in Y \times E : f(y) = \pi(e)\}$$ with the topology induced from the product topology on $Y \times E$. Define $\widetilde{\pi}: \widetilde{E} \to Y$ by $$\widetilde{\pi}(y,e) = y.$$ Show that if \widetilde{E} is connected, then $\widetilde{\pi}$ is a covering map. (4) Let $T^2 = S^1 \times S^1$ be the 2-torus and let \mathbb{RP}^2 be the real projective plane. Prove that any continuous map $f: \mathbb{RP}^2 \longrightarrow T^2$ is homotopic to a constant map. (5) Find, with proof, all values of $c \in \mathbb{R}$ so that the locus $$L_c = \{(x, y) \in \mathbb{R}^2 : y^2 = (x^2 - 1)(x - c)\}$$ is an embedded submanifold of \mathbb{R}^2 . (6) Consider the 3-form on \mathbb{R}^4 given by $$\alpha = x_1 dx_2 \wedge dx_3 \wedge dx_4 - x_2 dx_1 \wedge dx_3 \wedge dx_4 + x_3 dx_1 \wedge dx_2 \wedge dx_4 - x_4 dx_1 \wedge dx_2 \wedge dx_3.$$ Let S^3 be the unit sphere in \mathbb{R}^4 and let $\iota: S^3 \to \mathbb{R}^4$ be the inclusion map. - (a) Evaluate $\int_{S^3} \iota^* \alpha$. Express your answer explicitly as a rational multiple of a power of π . - (b) Let γ be the 3-form on $\mathbb{R}^4 \setminus \{0\}$ defined by $$\gamma = \frac{\alpha}{(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{\lambda}}$$ for $\lambda \in \mathbb{R}$. Determine the values of λ for which γ is closed and those for which it is exact. - (7) If G is a Lie group, a subgroup $H \subset G$ is called a discrete subgroup if the induced topology on H is the discrete topology. Suppose G is connected and H is a discrete subgroup which is also a normal subgroup. Show that H is contained in the center of G. - (8) Let V, W be the vector fields on \mathbb{R}^3 given by: $$V = \frac{\partial}{\partial x} + z^2 (1 + 4x) \frac{\partial}{\partial y} + 2z \frac{\partial}{\partial z}$$ $$W = 2xz \frac{\partial}{\partial y} + \frac{\partial}{\partial z}.$$ For $p \in \mathbb{R}^3$, set $D_p = \operatorname{span}\{V(p), W(p)\} \subset T_p \mathbb{R}^3$. - (a) Show that D is an involutive rank 2 distribution on \mathbb{R}^3 . - (b) Find a function u on \mathbb{R}^3 so that $\{u=0\}$ is an integral manifold of D containing the point (1,1,0).