
Algebra Preliminary Exam September 14, 2009

Instructions: Do as many of the eight problems as you can. Four completely
correct solutions will be a pass; a few complete solutions will count more than
many partial solutions. Always carefully justify your answers. If you skip a step
or omit some details in a proof, point out the gap and, if possible, indicate what
would be required to fill it in.

1. (a) Classify groups of order 2009 = 72 × 41.

(b) Suppose that F is a field and K/F is a Galois extension of degree 2009.
How many intermediate fields are there – that is, how many fields L are
there with F ⊂ L ⊂ K, both inclusions proper? (There may be several
cases to consider.)

2. Let K be a field. A discrete valuation on K is a function ν : K\{0} → Z
such that

(i) ν(ab) = ν(a) + ν(b)

(ii) ν is surjective

(iii) ν(a+ b) ≥ min{ν(a), ν(b)} ∀ a, b ∈ K\{0} with a+ b 6= 0

Let R := {x ∈ K\{0} : ν(x) ≥ 0} ∪ {0}. Then R is called the valuation ring
of ν.

Prove the following:

(a) R is a subring of K containing the 1 in K.

(b) for all x ∈ K\{0}, either x or x−1 is in R.

(c) x is a unit of R if and only if ν(x) = 0.

(d) Let p be a prime number, K = Q and νp : Q\{0} → Z be the function
defined by νp(a

b ) = n where a
b = pn c

d and p does not divide c and d.
Prove that the corresponding valuation ring R is the ring of all rational
numbers whose denominators are relatively prime to p.

3. Let F be a field of characteristic not equal to 2.

(a) Prove that any extension K of F of degree 2 is of the form F (
√
D) where

D ∈ F is not a square in F and conversely, that each such extension has
degree 2 over F .

(b) LetD1, D2 ∈ F neither of which is a square in F . Prove that [F (
√
D1,
√
D2) :

F ] = 4 if D1D2 is not a square in F and is of degree 2 otherwise.
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4. Let F be a field and p(x) ∈ F [x] an irreducible polynomial.

(a) Prove that there exists a field extension K of F in which p(x) has a root.

(b) Determine the dimension of K as a vector space over F and exhibit a
vector space basis for K.

(c) If θ ∈ K denotes a root of p(x), express θ−1 in terms of the basis found
in part (b).

(d) Suppose p(x) = x3 + 9x + 6. Show p(x) is irreducible over Q. If θ is a
root of p(x), compute the inverse of (1 + θ) in Q(θ).

5. Let R be a ring and Q an R-module. According to Baer’s criterion, Q is
injective if and only if for every ideal I of R, any R-module map f : I → Q
may be extended to an R-module map g : R→ Q:

0 // I

f
��

// R

g
��

Q

(a) Suppose that p is prime and n is a positive integer with p dividing n.
Then multiplication makes Z/pZ into a module over the ring Z/nZ. Show
that Z/pZ is injective as a Z/nZ-module if and only if p2 does not divide
n.

(b) Prove that if R is a PID, then an R-module Q is injective if and only if
rQ = Q for every nonzero r ∈ R.

6. Fix a ring R, an R-module M , and an R-module homomorphism f : M →M .

(a) If M satisfies the descending chain condition on submodules, show that
if f is injective, then f is surjective. (Hint: note that if f is injective, so
are f ◦ f , f ◦ f ◦ f , etc.)

(b) Give an example of a ring R, an R-module M , and an injective R-module
homomorphism f : M →M which is not surjective.

(c) If M satisfies the ascending chain condition on submodules, show that if
f is surjective, then f is injective.

(d) Give an example of a ring R, an R-module M , and a surjective R-module
homomorphism f : M →M which is not injective.

7. Let G be a finite group, k an algebraically closed field, and V an irreducible
k-linear representation of G.
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(a) Show that HomkG(V, V ) is a division algebra with k in its center.

(b) Show that V is finite-dimensional over k, and conclude that HomkG(V, V )
is also finite-dimensional.

(c) Show the inclusion k → HomkG(V, V ) found in (a) is an isomorphism.
(For f ∈ HomkG(V, V ), view f as a linear transformation and consider
f − αI, where α is an eigenvalue of f .)

8. Recall the following basic definitions and facts about ideals and varieties. Let
k be a field and n be a positive integer.

• If S ⊆ kn, the ideal of S is I(S) := {f ∈ k[x1, . . . , xn] : f(s) = 0 ∀ s ∈
S}. I(S) is a radical ideal in k[x1, . . . , xn].

• If I ⊆ k[x1, . . . , xn] is an ideal, then the variety of I in kn is V(I) := {s ∈
kn : f(s) = 0 ∀ f ∈ I}.
• If S ⊆ kn, then V(I(S)) is the smallest variety containing S and is called

the Zariski closure of S, denoted as S.

• Hilbert’s Nullstellensatz: If k is algebraically closed and I is an ideal in
k[x1, . . . , xn] then I(V(I)) =

√
I, where

√
I is the radical of I.

(a) If I and J are ideals in k[x1, . . . , xn], the ideal quotient of I by J is

I : J = {f ∈ k[x1, . . . , xn] : fg ∈ I ∀ g ∈ J}.

You may use without proof the fact that I : J is an ideal in k[x1, . . . , xn]
containing I.
Compute 〈xz, yz〉 : 〈z〉 in k[x, y, z].

(b) Compute V(〈xz, yz〉), V(〈z〉) and V(〈xz, yz〉 : 〈z〉).
(c) Let I and J be ideals in k[x1, . . . , xn].

(i) Prove that V(I : J) ⊇ V(I)\V(J).
(ii) If k is algebraically closed and I =

√
I then prove that V(I : J) =

V(I)\V(J). (Check this statement in the example from parts (a) and
(b).)
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