ALGEBRA PRELIMINARY EXAM - AUTUMN 2016

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count for more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

- 1. Let G be a finite simple group (that is, a group with no proper nontrivial normal subgroup). Assume that every proper subgroup of G is abelian. Prove that then G is cyclic of prime order.
- **2.** Let $a \in \mathbb{N}$, a > 0. Compute the Galois group of the splitting field of the polynomial $x^5 5a^4x + a$ over \mathbb{Q} .
- **3.** Let $\mathfrak{m} \subset \mathbb{Z}[x_1,\ldots,x_n]$ be a maximal ideal. Show that $\mathbb{Z}[x_1,\ldots,x_n]/\mathfrak{m}$ is a finite field.
- **4.** Recall that an inner automorphism of a group is an automorphism given by conjugation by an element of the group. An outer automorphism is an automorphism that is not inner.
 - (a) Prove that S_5 has a subgroup of order 20.
 - (b) Use the subgroup from (a) to construct a degree 6 permutation representation of S_5 (i.e., an embedding $S_5 \hookrightarrow S_6$ as a transitive permutation group on 6 letters).
 - (c) Conclude that S_6 has an outer automorphism.
- **5.** Let A be a commutative ring and M a finitely generated A-module. Define

$$Ann(M) = \{ a \in A \mid am = 0 \text{ for all } m \in M \}.$$

Show that for a prime ideal $\mathfrak{p} \subset A$, the following are equivalent:

- (a) Ann $M \not\subset \mathfrak{p}$.
- (b) The localization of M at the prime ideal $\mathfrak p$ is 0.
- (c) $M \otimes_A k(\mathfrak{p}) = 0$, where $k(\mathfrak{p}) = A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ is the residue field of A at \mathfrak{p} .
- **6.** Let $A = \mathbb{C}[x,y]/(y^2 (x-1)^3 (x-1)^2)$.
 - (a) Show that A is an integral domain and sketch the \mathbb{R} -points of Spec A.
 - (b) Find the integral closure of A. Recall that for an integral domain A with a fraction field K, the integral closure of A in K is the set of all elements of K integral over A.

- 7. Let R = k[x, y] where k is a field, and let I = (x, y)R.
 - (a) Show that

$$0 \longrightarrow R \xrightarrow{\phi} R \oplus R \xrightarrow{\psi} R \longrightarrow k \longrightarrow 0$$

where $\phi(a) = (-ya, xa)$, $\psi((a, b)) = xa + yb$ for $a, b \in R$, is a projective resolution of the R-module $k \simeq R/I$.

- (b) Show that I is not a flat R-module by computing $\operatorname{Tor}_i^R(I,k)$.
- **8.** Let k be a field of positive characteristic p, \mathbb{Z}/p a cyclic group of order p, and $k\mathbb{Z}/p$ the group algebra of \mathbb{Z}/p over k.
 - (a) Let σ be a generator of \mathbb{Z}/p and let $t = \sigma 1$. Show that there is an isomorphism $k\mathbb{Z}/p \simeq k[t]/t^p$.
 - (b) Let M be a finite dimensional projective $k\mathbb{Z}/p$ -module and Σ the linear operator on M induced by the action of σ . Show that
 - (i) $\dim_k M$ is divisible by p; and

(ii)
$$\operatorname{rk}(\Sigma - \operatorname{Id}_M) = \frac{p-1}{p} \dim_k M.$$

(c) Let M be a finite dimensional $k\mathbb{Z}/p$ -module, and assume that

$$\operatorname{rk}(\Sigma - \operatorname{Id}_M) = \frac{p-1}{p} \dim_k M.$$

Prove that then M is projective.