
LINEAR ANALYSIS PRELIM EXAM

Autumn 2009

Do as many of the eight problems as you can. Four completely correct solutions will be
a pass; a few complete solutions will count more than many partial solutions. Always
carefully justify your answers. If you skip a step or omit some details in a proof, point
out the gap and, if possible, indicate what would be required to fill it in.



1. (a) Let λmax(A) denote the maximal eigenvalue of the real symmetric n × n
matrix A. Show that λmax is a Lipschitz function of A.

(b) Analogs of this result fail if the assumption that A is symmetric is removed.
Show that if n > 1, then λmax is not a Lipschitz function on the space of
real n× n matrices all of whose eigenvalues are real.

2. Let T > 0 and x0 ∈ Rn. Suppose that f : [0, T ] × Rn → Rn is continuous and
satisfies

|f(t, x)− f(t, y)| ≤ C|x− y|| log |x− y||
for some C > 0. Show uniqueness for the initial value problem{

x′ = f(t, x)
x(0) = x0

.

That is, if x(t), y(t) are C1 maps of [0, T ] into Rn which solve this initial value
problem, then x(t) = y(t) for 0 ≤ t ≤ T .

3. Let A : [0, 1] → Cn×n be continuous and suppose that for each t ∈ [0, 1], all
eigenvalues of A(t) satisfy Reλ > 0. Show that there is a continuous B : [0, 1]→
Cn×n such that

(B(t) + I)(B(t)− 2I) = A(t)

for all t ∈ [0, 1].

4. Consider the explicit one-step scheme

xk+1 = xk + hψ(h, tk, xk)

with step size h > 0 for numerically approximating the solution x(t) of the initial
value problem

x′(t) = f(t, x), x(0) = x0

on the interval [0, T ]. Here tk = kh for 0 ≤ kh ≤ T and xk represents the
approximation to x(tk). Assume that x, f, ψ are Rn-valued, f is continuous in
t, x and uniformly Lipschitz continuous in x on [0, T ]× Rn, and ψ is continuous
in h, t, x and uniformly Lipschitz continuous in x on [0, h0]× [0, T ]×Rn for some
h0 > 0.
(a) Define what it means for the scheme to be accurate of order p, for a positive

integer p.
(b) Show that if the scheme is accurate of order at least 1, then the numerical

approximation defined by the scheme converges to the actual solution in the
sense that

max
0≤kh≤T

|x(tk)− xk| → 0

as h→ 0.



5. Let C0([0, 1]) denote the vector space of complex-valued, continuous functions
f on [0, 1] satisfying f(0) = f(1) = 0. For f ∈ C0([0, 1]), the restriction f |(0,1)

defines a distribution ∈ D′((0, 1)), whose distribution derivative we denote by
f ′ ∈ D′((0, 1)).

Define
H1 = {f ∈ C0([0, 1]) : f ′ ∈ L2((0, 1))},

where L2((0, 1)) is viewed as a subspace of D′((0, 1)) in the usual way. For f ,
g ∈ H1, set

〈f, g〉1 =

∫ 1

0

f ′(x)g′(x) dx.

(a) Show that 〈·, ·〉1 is an inner product on H1 with respect to which H1 is
complete.

(b) Show that for each x ∈ (0, 1), the linear functional

`x(f) = f(x)

is bounded on H1.
(c) For each x ∈ (0, 1), find the unique element gx ∈ H1 so that

`x(f) = 〈f, gx〉1 for all f ∈ H1.

6. Define the projection operator P on L2(S1) in terms of the Fourier representation
by

P

(
∞∑

n=−∞

ane
inθ

)
=
∞∑
n=0

ane
inθ.

For g ∈ C(S1,C), define the multiplication operator Mg on L2(S1) by Mgf = gf .
Define the commutator Cg : L2(S1)→ L2(S1) by

Cg = [P,Mg] ≡ PMg −MgP.

(a) Identify Cg
∗. Deduce that if g is real-valued, then Cg is skew-Hermitian.

(b) If g is a trigonometric polynomial

g =
N∑

n=−N

bne
inθ,

show that Cg is an operator of finite rank.
(c) Show that if g ∈ C(S1,C), then Cg is a compact operator on L2(S1).

(Hint: Approximate g.)

7. Solve explicitly the Cauchy problem for the heat equation: ut = uxx for (x, t) ∈ R2

u (0, t) = 1 + sin t
ux (0, t) = sin

(
π
4

+ t
)

for a function u(x, t), assumed to be 2π-periodic in t.
(Caution: Note that the “initial conditions” are given at x = 0, not t = 0.)



8. Consider the linear functionals u1, u2 defined by

u1(ϕ) =

∫ ∞
−∞

ϕ(x, 0) dx,

u2(ϕ) =

∫ ∞
−∞

ϕ(0, y) dy,

for ϕ a suitable function on R2.
(a) Show that u1, u2 ∈ S ′(R2) (the space of tempered distributions).
(b) Show that û1 = 2πu2, where ̂ denotes the Fourier transform.

Be sure to justify your arguments.


