LINEAR ANALYSIS PRELIM EXAM Autumn 2009

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

- 1. (a) Let $\lambda_{\max}(A)$ denote the maximal eigenvalue of the real symmetric $n \times n$ matrix A. Show that λ_{\max} is a Lipschitz function of A.
 - (b) Analogs of this result fail if the assumption that A is symmetric is removed. Show that if n > 1, then λ_{max} is not a Lipschitz function on the space of real $n \times n$ matrices all of whose eigenvalues are real.
- 2. Let T > 0 and $x_0 \in \mathbb{R}^n$. Suppose that $f : [0, T] \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous and satisfies

$$|f(t,x) - f(t,y)| \le C|x - y||\log|x - y||$$

for some C > 0. Show uniqueness for the initial value problem

$$\begin{cases} x' = f(t, x) \\ x(0) = x_0 \end{cases}.$$

That is, if x(t), y(t) are C^1 maps of [0,T] into \mathbb{R}^n which solve this initial value problem, then x(t) = y(t) for $0 \le t \le T$.

3. Let $A:[0,1]\to\mathbb{C}^{n\times n}$ be continuous and suppose that for each $t\in[0,1]$, all eigenvalues of A(t) satisfy $\operatorname{Re}\lambda>0$. Show that there is a continuous $B:[0,1]\to\mathbb{C}^{n\times n}$ such that

$$(B(t) + I)(B(t) - 2I) = A(t)$$

for all $t \in [0, 1]$.

4. Consider the explicit one-step scheme

$$x_{k+1} = x_k + h\psi(h, t_k, x_k)$$

with step size h > 0 for numerically approximating the solution x(t) of the initial value problem

$$x'(t) = f(t, x), x(0) = x_0$$

on the interval [0,T]. Here $t_k = kh$ for $0 \le kh \le T$ and x_k represents the approximation to $x(t_k)$. Assume that x, f, ψ are \mathbb{R}^n -valued, f is continuous in t, x and uniformly Lipschitz continuous in x on $[0,T] \times \mathbb{R}^n$, and ψ is continuous in h, t, x and uniformly Lipschitz continuous in x on $[0, h_0] \times [0, T] \times \mathbb{R}^n$ for some $h_0 > 0$.

- (a) Define what it means for the scheme to be accurate of order p, for a positive integer p.
- (b) Show that if the scheme is accurate of order at least 1, then the numerical approximation defined by the scheme converges to the actual solution in the sense that

$$\max_{0 \le kh \le T} |x(t_k) - x_k| \to 0$$

as $h \to 0$.

5. Let $C_0([0,1])$ denote the vector space of complex-valued, continuous functions f on [0, 1] satisfying f(0) = f(1) = 0. For $f \in C_0([0, 1])$, the restriction $f|_{(0,1)}$ defines a distribution $\in \mathcal{D}'((0,1))$, whose distribution derivative we denote by $f' \in \mathcal{D}'((0,1)).$

Define

$$H^1 = \{ f \in C_0([0,1]) : f' \in L^2((0,1)) \},$$

where $L^2((0,1))$ is viewed as a subspace of $\mathcal{D}'((0,1))$ in the usual way. For f, $g \in H^1$, set

$$\langle f, g \rangle_1 = \int_0^1 f'(x) \overline{g'(x)} \, dx.$$

- (a) Show that $\langle \cdot, \cdot \rangle_1$ is an inner product on H^1 with respect to which H^1 is complete.
- (b) Show that for each $x \in (0,1)$, the linear functional

$$\ell_x(f) = f(x)$$

is bounded on H^1 .

(c) For each $x \in (0,1)$, find the unique element $g_x \in H^1$ so that

$$\ell_x(f) = \langle f, g_x \rangle_1$$
 for all $f \in H^1$.

6. Define the projection operator P on $L^2(S^1)$ in terms of the Fourier representation by

$$P\left(\sum_{n=-\infty}^{\infty} a_n e^{in\theta}\right) = \sum_{n=0}^{\infty} a_n e^{in\theta}.$$

For $g \in C(S^1, \mathbb{C})$, define the multiplication operator M_g on $L^2(S^1)$ by $M_g f = gf$. Define the commutator $C_g : L^2(S^1) \to L^2(S^1)$ by

$$C_g = [P, M_g] \equiv PM_g - M_g P.$$

- (a) Identify C_g^* . Deduce that if g is real-valued, then C_g is skew-Hermitian.
- (b) If q is a trigonometric polynomial

$$g = \sum_{n=-N}^{N} b_n e^{in\theta},$$

- show that C_g is an operator of finite rank. (c) Show that if $g \in C(S^1, \mathbb{C})$, then C_g is a compact operator on $L^2(S^1)$. (*Hint*: Approximate g.)
- 7. Solve explicitly the Cauchy problem for the heat equation:

$$\begin{cases} u_t = u_{xx} & \text{for } (x,t) \in \mathbb{R}^2 \\ u(0,t) = 1 + \sin t \\ u_x(0,t) = \sin \left(\frac{\pi}{4} + t\right) \end{cases}$$

for a function u(x,t), assumed to be 2π -periodic in t. (Caution: Note that the "initial conditions" are given at x=0, not t=0.) 8. Consider the linear functionals u_1 , u_2 defined by

$$u_1(\varphi) = \int_{-\infty}^{\infty} \varphi(x, 0) \, dx,$$
$$u_2(\varphi) = \int_{-\infty}^{\infty} \varphi(0, y) \, dy,$$

for φ a suitable function on \mathbb{R}^2 .

- (a) Show that $u_1, u_2 \in \mathcal{S}'(\mathbb{R}^2)$ (the space of tempered distributions). (b) Show that $\widehat{u_1} = 2\pi u_2$, where $\widehat{}$ denotes the Fourier transform. Be sure to justify your arguments.