Topology and Geometry of Manifolds Preliminary Exam September 14, 2006

Do as many of the eight problems as you can. Four problems done correctly will be a clear pass. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in. The word "smooth" means C^{∞} , and all manifolds are assumed to be smooth and without boundary unless otherwise specified.

- 1. Let $T^n = S^1 \times \cdots \times S^1$ denote the *n*-torus, and let M be a connected topological manifold with finite fundamental group. Show that any continuous map from M to T^n is homotopic to a constant map.
- 2. Represent the Möbius strip as the quotient space of the square $[-1,1] \times [-1,1]$ by identifying (1,y) with (-1,-y) for $-1 \le y \le 1$. Its boundary (as a manifold with boundary) is the image of the set $\{(x,y) \in [-1,1] \times [-1,1] : |y|=1\}$ under the quotient map. Prove that there does not exist a retraction from the Möbius strip to its boundary.
- 3. Let X be a complete, smooth vector field on \mathbb{R}^2 , and let ϕ denote its flow. We say X is area-preserving if $\phi_t^*(dA) = dA$ for all t, where $dA = dx \wedge dy$ is the standard area form. Show that X is area-preserving if and only if there exists a function $f \in C^{\infty}(\mathbb{R}^2)$ such that

$$X = \frac{\partial f}{\partial y} \frac{\partial}{\partial x} - \frac{\partial f}{\partial x} \frac{\partial}{\partial y}.$$

[Hint: Think about the Lie derivative of dA with respect to X.]

4. For each of the following vector fields on \mathbb{R} , find the flow and determine whether the vector field is complete.

$$X = x \frac{\partial}{\partial x},$$
$$Y = x^2 \frac{\partial}{\partial x}.$$

5. Define a subset $S \subset \mathbb{R}^4$ by

$$S = \{(x, y, u, v) : x^2 + y^2 - 2uv = x^2 - y^2 + u^2 - v^2 = 0\}.$$

- (a) Prove that there exist open sets $U, V \subset \mathbb{R}^2$ such that $(-1, 1, 1, 1) \in U \times V$, and smooth functions $\alpha, \beta \colon U \to \mathbb{R}$ with the following property: $(x, y, u, v) \in S \cap (U \times V)$ if and only if $(x, y) \in U$, $u = \alpha(x, y)$, and $v = \beta(x, y)$.
- (b) Compute the following partial derivatives at (x, y) = (-1, 1):

$$\frac{\partial \alpha}{\partial x}$$
, $\frac{\partial \alpha}{\partial y}$, $\frac{\partial \beta}{\partial x}$, $\frac{\partial \beta}{\partial y}$.

- 6. Suppose (M, g) is a Riemannian manifold, and $f: M \to \mathbb{R}$ is a smooth proper map such that $|\operatorname{grad} f|_g \equiv 1$. (Recall that a map is *proper* if the inverse image of every compact set is compact.)
 - (a) If ϕ is the flow of grad f, show that $f(\phi_t(x)) = t + f(x)$ whenever $(t, x) \in \mathbb{R} \times M$ is in the domain of ϕ .
 - (b) Show that $\operatorname{grad} f$ is complete.
- 7. The *Heisenberg group* is the Lie group whose underlying manifold is \mathbb{R}^3 , with the following group structure:

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + xy' - yx').$$

(You may accept without proof that it is a Lie group. Its identity element is (0,0,0), and the inverse of (x,y,z) is (-x,-y,-z).)

(a) Compute the left-invariant vector fields X, Y, Z whose values at the identity are

$$X|_{(0,0,0)} = \frac{\partial}{\partial x},$$

$$Y|_{(0,0,0)} = \frac{\partial}{\partial y},$$

$$Z|_{(0,0,0)} = \frac{\partial}{\partial z}.$$

- (b) Show that the distribution spanned by X and Z is integrable, but the one spanned by X and Y is not.
- 8. Let M be a smooth, oriented, compact n-manifold without boundary and let I be the interval [0,1]. Suppose α is a p-form and β is an (n-p)-form, both defined and smooth on $M \times I$. Prove the following "integration-by-parts formula":