
Real Analysis Preliminary Examination
Autumn, 2013

Instructions: The exam is four hours long. There are eight problems,
each weighted equally. Do as many of the eight problems as you can. Four
completely correct solutions will be a pass; a few complete solutions will count
more than many partial solutions. Always carefully justify your answers. If
you skip a step or omit some details in a proof, point out the gap and, if
possible, indicate what would be required to fill it in.

You may use any standard theorem from your real variables course, identi-
fying it either by name or by stating it in full. Be sure to establish that the
hypotheses of the theorem are satisfied before you use it.

The reals R are assumed to be equipped with standard Lebesgue measure
denoted by m, and integrals with respect to this measure use the notation dx.
All functions are assumed to be real-valued unless otherwise stated.

1. Suppose that fn : [0, 1]→ R, (n ≥ 1), are Lebesgue measurable, and that

(*)

∫ 1

0

|fn(x)|3 dx ≤ 1 for all n ≥ 1.

(a) Show that for every ε > 0 there exists a δ > 0 such that for every
Lebesgue measurable subset E ⊂ [0, 1] with m(E) < δ we have that∫

E

|fn(x)| dx < ε for all n ≥ 1 .

(b) Give an example, with proof, that the conclusion of (a) is false if (*) is
replaced by ∫ 1

0

|fn(x)| dx ≤ 1 for all n ≥ 1.

2. A topological space is called separable if it contains a dense subset that is
finite or countably infinite.

(a) Prove that every subspace of a separable metric space is also separable.
(b) Provide an example of a separable topological space which has a sub-

space that is not separable.

3. Let S be a subset of R with strictly positive Lebesgue measure, and let
Q denote the set of rational numbers in R. Prove that almost every (with
respect to Lebesgue measure) real number can be written as the sum of an
element of S and an element of Q.

4. Let H be a separable, infinite-dimensional Hilbert space over the reals.
For a bounded linear operator T : H → H, recall that its norm is defined by
‖T‖ = sup{‖Tx‖ : x ∈ H, ‖x‖ = 1}.

(a) If T is a bounded linear operator on H such that ‖I−T‖ < 1, where I is
the identity operator on H, prove that T is invertible with a bounded inverse.



(b) Suppose that {en : n ≥ 1} is a complete orthonormal set in H. Suppose
also that {fn : n ≥ 1} is an orthonormal set in H such that

∞∑
n=1

‖en − fn‖2 < 1 .

Prove that {fn : n ≥ 1} is a complete orthonormal set in H.

5. Let f ∈ L1(R). Prove that the following limits exist, and determine their
values in terms of ‖f‖1.

(a) lim
h→0

∫
R
|f(x+ h) + f(x)| dx.

(b) lim
t→∞

∫
R
|f(x+ t) + f(x)| dx.

6. Let X be a compact Hausdorff space, and let C(X) denote the space of
continuous, complex-valued functions on X. Denote as usual the sup norm on
C(X) by ‖f‖∞ = sup{|f(x)| : x ∈ X}.

Suppose there is another norm ‖·‖ on C(X) under which is it also a Banach
space. Assume moreover that, for each x ∈ X the linear functional λx, defined
by λx(f) = f(x), is bounded on this Banach space. Show that there exist
strictly positive constants A and B such that, for every f ∈ C(X), we have
that

A ‖f‖∞ ≤ ‖f‖ ≤ B ‖f‖∞ .

7. Let {fn : n ≥ 1} be a sequence of continuously differentiable functions on
[0, 1], and assume that

|f ′n(x)| ≤ 1√
x

for all 0 < x ≤ 1 and all n ≥ 1,

and that ∫ 1

0

fn(x) dx = 0 for all n ≥ 1 .

Prove that this sequence has a subsequence that converges uniformly on [0, 1].

8. Let f be a continuous real-valued function on [0,∞) with f(0) = 0. Sup-
pose that for each y ∈ [0, 1] we have that f(ny) → 0 as n → ∞ through the
integers. Prove that f(x)→ 0 as x→∞ through the reals.


