
Russian Mathematical Surveys
                   

SOME PROBLEMS OF THE QUALITATIVE
THEORY OF SECOND ORDER ELLIPTIC
EQUATIONS (CASE OF SEVERAL
INDEPENDENT VARIABLES)
To cite this article: E M Landis 1963 Russ. Math. Surv. 18 1

 

View the article online for updates and enhancements.

Related content
LINEAR EQUATIONS OF THE SECOND
ORDER OF PARABOLIC TYPE
A M Il'in, A S Kalashnikov and O A Oleinik

-

QUASI-LINEAR ELLIPTIC EQUATIONS
AND VARIATIONAL PROBLEMS WITH
MANY INDEPENDENT VARIABLES
O A Ladyzhenskaya and N N Ural'tseva

-

Boundary-value problems for partial
differential equations in non-smooth
domains
V A Kondrat'ev and O A Oleinik

-

Recent citations
A criterion of solvability of the elliptic
Cauchy problem in a multi-dimensional
cylindrical domain
Tynysbek Sh. Kalmenov et al

-

Nodal sets of Laplace eigenfunctions:
polynomial upper estimates of the
Hausdorff measure
Alexander Logunov

-

Convergence of a family of solutions to a
Fujita-type equation in domains with
cavities
S. V. Pikulin

-

This content was downloaded from IP address 128.95.224.18 on 12/09/2019 at 21:56

https://doi.org/10.1070/RM1963v018n01ABEH004124
http://iopscience.iop.org/article/10.1070/RM1962v017n03ABEH004115
http://iopscience.iop.org/article/10.1070/RM1962v017n03ABEH004115
http://iopscience.iop.org/article/10.1070/RM1961v016n01ABEH004099
http://iopscience.iop.org/article/10.1070/RM1961v016n01ABEH004099
http://iopscience.iop.org/article/10.1070/RM1961v016n01ABEH004099
http://iopscience.iop.org/article/10.1070/RM1983v038n02ABEH003470
http://iopscience.iop.org/article/10.1070/RM1983v038n02ABEH003470
http://iopscience.iop.org/article/10.1070/RM1983v038n02ABEH003470
http://dx.doi.org/10.1080/17476933.2018.1437423
http://dx.doi.org/10.1080/17476933.2018.1437423
http://dx.doi.org/10.1080/17476933.2018.1437423
http://dx.doi.org/10.4007/annals.2018.187.1.4
http://dx.doi.org/10.4007/annals.2018.187.1.4
http://dx.doi.org/10.4007/annals.2018.187.1.4
http://dx.doi.org/10.1134/S0965542516110099
http://dx.doi.org/10.1134/S0965542516110099
http://dx.doi.org/10.1134/S0965542516110099
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/314553836/Middle/IOPP/IOPs-Mid-RMS-pdf/IOPs-Mid-RMS-pdf.jpg/1?


SOME PROBLEMS OF THE QUALITATIVE
THEORY OF SECOND ORDER ELLIPTIC

EQUATIONS (CASE OF SEVERAL
INDEPENDENT VARIABLES)

by

E.M. LANDIS

Contents

Introduction 1
Chapter I. Properties of solutions with constant sign 2

§0. Introduction 2
§1. Conditions placed on the coefficients of the equation. Some

notations 6
§2. Continuation of a quadratic form from a domain to the whole

space 7
§3. The principal lemma 11
§4. Character of growth of a solution in a bounded domain . . . . 15
§5. Theorem of Phragmen-LindelBf type 17
§6. Growth and decay of the solution at infinity and in the

neighbourhood of a boundary point 20
§7. The principal lemma for the self-adjoint equation 22
§8. A theorem of analysis 30
§9. Theorems on the growth and decay of a positive solution of a

self-adjoint equation 38
Chapter II. Properties of solutions with changing sign 40

§0. Introduction 40
§1. The uniqueness theorem 40
§2. Three-sphere theorem 43
§3. On the admissible rate of decay of the solution in a semi-

cylinder 55
§4. The relation between the number of changes of sign of the

solution and its growth 56
List of references 60

Introduction

This article is a continuation of the article "Some Problems of the
Qualitative Theory of Elliptic and Parabolic Equations " , published in
Uspekhi Mat. Nauk. vol. XIV, part 1 (85). 1959. In it we considered the
case of two independent variables.
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According to the original plan the subsequent article should consider
the same problems, but now for the case of several independent variables.
However, circumstances so turned out that this subsequent article appears
with a great delay. In the time which has elapsed, new success has been
achieved in this field, and it appeared appropriate to alter somewhat the
original plan: to restrict ourselves to the elliptic equations only, and
instead, to include some new problems (on the behaviour of solutions of
self-adjoint equations with non-smooth coefficients, the theorem con-
cerning three spheres, and some others), and to devote another article to
the parabolic equations.

In this article, we consider exclusively the second order linear
elliptic equation

It is always supposed here, that the sign of c(x) is taken so that the
maximum principle is fulfilled.

Chapter I

PROPERTIES OF SOLUTIONS WITH CONSTANT SIGN

§0. Introduction

This chapter concerns properties of those solutions of second order
linear elliptic equations,
which they are determined.

which preserve a constant sign in the domain in
We may assume that this sign is positive.

One of the principal facts,
characterizing the behaviour of posi-
tive harmonic functions, is Harnack' s
inequality: let a positive harmonic
function u be defined in a circle of
radius R, then (fig. 1) at any point
P(r, Ф) we have the inequality

Я - г ^ u(P) ^H-\-r
u(O) li-r

where r is the distance from Ρ to the
centre 0 of the circle.

P i g
·
 1
· This inequality shows that far away

from the boundary of the domain, a
positive harmonic function changes slowly.

For solutions of the elliptic equation (1) analogous theorems have the
following forms:

I. In the case of two space variables, Serrin [l] proved the follow-
ing theorem. Let equation (1) be uniformly elliptic in the circl'e of radius
R < 1, i.e.
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η

(Хак'Щ <A. • (O.I)

В!

Let the remaining coefficients be bounded by a constant A, and let с < 0.
Then, for any r < R there exist positive constants C

t
 and C

2
, depending on

a, A and r/R, such that in the circle of radius г

2. For the case of several independent variables the same author [l]
proved the following theorem. Let equation (1) be defined in a sphere of
radius R < 1, let all the previous conditions be fulfilled, and besides,
let the coefficients a ^ be continuous at points on the surface of the
sphere and satisfy a Dini condition there: for any pair of points Ρ and Q,
where Ρ is a point of the sphere, and Q is a point of the surface of the

sphere,

I a
ifc
 (/>) — a

4ft
 (̂ ) | < φ (| /»^|), (0.3)

2Я

where \
 φ
 ds < oo. Let \

 φ
^ ds = Δ. Then, as before, the inequality

ο υ

(0.2) holds for any r < R, but Ci and C
2
 depend not only on a, A and r/R,

but also on Δ.

We note that although very little is demanded here of the coefficients,
(in all, only the Dini condition, and then only on the surface on the
sphere), however, between the theorems of Serrin in the case of two and of
several variables, there is an essential difference in that in the first
case the theorem is generalized automatically to the case of the quasi-
linear equation

Σ /' ди д
г
и \ д

2
и _.

i, k = 1

but in the second case we have not the possibility of going beyond the
limits of linearity in such a simple way. Such a possibility appeared
after Nash [3l] and Giorgi [з] proved, that the solution of a self-adjoint
elliptic equation satisfies a HOlder condition, independently of the
smoothness of the coefficients (a simple proof of this theorem was given
by Moser [4]). Further, Kruzhkov [32], [зз] gave a method, allowing the
transfer of the interior estimates for the solution of the elliptic
equation

i, ft

to solutions of the equation
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i, h

in particular, the estimates of Nash and Giorgi. This method consists in
considering the solution и(х

и
 ..., χ

η
) of equation (0.4) as the solution

u(xi, ..., x
n
, у) т u(xi x

n
) of the equation

t, ft

where the constant К is selected so large that the form

2<*i*£i£fc +Σί>ι£ίη + Kr\* is made positive definite.

By an analogous method one can include lower terms in a non-self-
adjoint equation, and also terms of the form cu + f in an equation con-
taining terms with derivatives only.

Finally, in 1961 lioser [34] proved that Harnack' s inequality holds
for the self-adjoint equation

i,h

0<a<

with arbitrary measurable coefficients (the equation is understood in the
sense of an integral identity).

The method of Kruzhkov mentioned above, permits the introduction into
this equation of lower terms with arbitrary bounded coefficients.

In the case of harmonic functions an immediate consequence of Harnack' s
inequality is Liouville's theorem: a positive harmonic function, defined
in the whole plane is a constant. In the general case it will be the same,
if the constant is a solution of the equation, and if Harnack' s inequality
(0.2) is satisfied for a sphere of any radius, the constants Ci and C

2

depending, for any R, only on the ratio r/R. Hence, for the equation

η

Σ «ι* W = ° (0.5)
i, ft=l *

when η = 2, Liouville's theorem holds for any coefficients, if only the
inequality (0.1) be fulfilled uniformly (a theorem by Serrin [ l ] : a
positive solution of equation (0.5) for η = 2, defined in the whole plane,
is a constant).

For η > 2, this was proved under the hypothesis that the coefficients
of equation (0.4) satisfy Dini's condition at infinity (theorem of
Gilbarg and Serrin [2]).

A few words concerning Liouville's theorem for the elliptic equation (0.4),
without the hypothesis of uniform ellipticity.

As is known from an example by Bernstein LsJ, Liouville's theorem, in the
formulation which demands boundedness of the solution on one side, is not true in
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this case. If one demands boundedness of the solution on the two sides, such a
Liouville theorem, in the case of two variables, was proved by Bernstein L5J.
Adel* son-Vel'skii proved [б], that in this case, Liouville's theorem is a fact
connected with the geometry of the graph of the function. In fact, he proved the
following theorem. Let /(*, y) be a continuous function, defined in the whole
xy-plane. Let the graph of this function be such that it is impossible to cut off
a "cap" by any plane whatever (i.e. for any linear function ax + by + c, the
set of points xy, where f(x, y) > ax + by + с or f(x, y) < ax + by + с has not a
bounded component). Then, either f(x, y) grows at infinity not slower than
linearly, or the graph of f(x, y) is a cylinder with generator parallel to the
plane of xy.

An example by Hopf [7] proves that, in the case of three independent
variables, this is indeed not true, even for the solution of the elliptic equation
(0.4) (without the condition of uniform ellipticity). For uniformly elliptic
equations, the two-sided theorem of Liouville was proved by Gilbarg and Serrin [2]
under the hypothesis that the coefficients in the equation have limits at infinity.

We return to Harnack' s inequality. For an unbounded domain, not coin-

ciding with the whole space, we obtain from it an upper estimate for the

rate of growth and decay of a positive solution in dependence on the

"width" of the domain. Thus, if the solution of equation (1), for which

Harnack' s inequality is correct, is positive in the cylinder

η η

Σ χ
2
 < /ι

2
, %ι > 0, then, in the narrower cylinder Σ χ

2
 < /if < /ι

2
 ,

i=2
 ι

 i = 2
 ι

this solution grows and decays not faster than the exponential:

-*-в-
м
ч<в(а;

1
, . . ., x

n
)< Ce

M
*i.

The constant Μ depends on h, h^/h and on the constants in Harnack' s

inequality (0.2).

The solution, determined inside a cone, will, in a narrower cone, on

going to infinity or on approaching the vertex of the cone, increase and

decrease not faster than according to a power, the index being proportional

to the angle at the vertex.

Estimates of a similar kind are ob-

tained at once by applying Harnack' s in-

equality to a sequence of spheres, lying

in the domain, and such that the centre

of each sphere lies inside the previous

one, and is situated inside a sphere con-

centric with this previous one, and

having its radius smaller in a given

constant ratio (for example, one half).

We shall not, therefore, dwell on them

in more detail.

For positive solutions, vanishing on

the boundary of the domain (if the domain

is infinite) or on part of the boundary, one can obtain an estimate on the

other side: the narrower the domain, the quicker the solution increases or

decreases in it. Corresponding estimates follow from such a fact. Let a

domain D, situated inside a sphere of radius R < 1 (fig. 2), contain the

centre О of the sphere, and have limit points on its periphery. We denote
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by Γ that part of the boundary of the domain, which is strictly inside
the sphere. Let the solution u(x) of equation (1) be defined in D, be
positive in D, and vanish on Γ. One must make the assumptions with respect
to the coefficients as in the paper by Serrin mentioned (but to demand that
Dini' s condition be satisfied, now not on the boundary, but at all points
of space).

Then, because the ratio of the measure of the domain D to the volume
of the sphere is smaller than some constant ε > 0, depending on α, Α, Δ
(the number Δ is defined by the Dini condition), it follows that

sup и (χ) > 2н (0).

For a self-adjoint equation (as in the case of Giorgi) a similar
statement can be proved under the assumption of measurability only of the
coefficients.

This statement makes it possible to obtain a theorem of Phragmen-
Lindeief type [30], and also to obtain a lower estimate for the rate of
growth and decay of the solution in the neighbourhood of a boundary point,
depending on the structure of the domain in the neighbourhood of this
point.

In the first chapter the principal place is taken by the establishment
of this fact of the growth of the solution in a narrow domain (lemmas 3.1
and 7.1), which is then applied to estimates of the growth or decay of
the solution in domains of different form.

§ I. Conditions imposed on the coefficients of the equation.

Some notations

In this section we consider the equation

Concerning the coefficients, we shall suppose that they are measurable,

have their moduli bounded by unity, and satisfy the inequalities

Σ aikUk>a ΣΙΙ α>0, (1.1)
j,ft=l t=l

and

c(ar)<0. (1.2)

That we bound the coefficients by unity, and not by some other con-
stant, clearly plays no part whatever, since we can divide the entire
equation by this constant, altering correspondingly inequality (1.1).

Besides, in §§3-6 of this chapter, we suppose that the coefficients
ajfc are all continuous, and have the common modulus of continuity ш(г),
satisfying the condition
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d

? ω (г) dr
со,

where d is the diameter of the domain in which the equation is defined (d
may be infinite).

We denote equation (1.0) together with these conditions by (1.0.A).
In future Qfl will denote the η-dimensional sphere with centre at the

origin of coordinates 0, and radius R.
By \ikE we denote the fe-dimensional Hausdorff measure of a set Ε in n-

dimensional space. In particular, ц„£ is the Lebesgue η-dimensional measure
of the set E.

§2. Continuation of a quadratic form from a domain to the whole space.

In this section we consider the following problem. There is given a
domain D С R

n
. In this domain the coefficients of a quadratic form are

given

Σ a
lk
(x)Uk- (2-0)

i,ft=l

Let each of the coefficients а^(дс) be uniformly continuous in D, the
quadratic form satisfying the inequalities

τι η

Is it possible to continue the coefficients of the quadratic form to
the whole space, so that the modulus of continuity of each of the coeffic-
ients in increased by not more than a constant multiplicative factor
(depending only on the dimensionality of space), and so that the inequality
(2.1) is preserved?

This problem has a positive solution. To obtain it, we consider the
following algorithm of continuation of a function from D to the whole
space.

Let f(x) be a function uniformly continuous in D, and its modulus of
continuity U)(r) be a convex function

1

). г
ъ
 r

2
> 0 .

We continue f(x) by continuity in D, and let χ be a point of R
n
, not

belonging to D. _
We denote the intersection of D with a sphere of radius г and centre

at the point χ by D
x
(r), the η-dimensional measure of D

x
(r) by m

x
(r), and

the distance from χ to the domain D by p
z
. We put

The assumption of convexity of Ш(г) i s essential so that the function can be
continued with increase of modulus of continuity by a factor not depending on
the domain.
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/(*) = бс
Г»тх (г)

dr

(2.2)

Ox

Let xo be any point belonging to D, and \ χ - x
0
 \ = δ. We prove that

m u
 | /"(ж) — / (ж

0
) I <: 4ω (δ). (2.3)

We have '
 v

 '

/(*)-/(*„) =

со Γ J /(«/Wyl

J L Л»х(г) J d '
_ Ox

Ox

CO

!
_ Oc

r3r

f (У) dy
)

nx(r)
1 f D « ( r )

rfr

or

Qx

(У)

Ox

S I Dx(r) I
I. ^m

x
 (r) J

Oc (2.4)

Qx

From the convexity of the function co(r) i t follows that

where r = | дс - у \, or

(2.5)

From (2.4) and (2.5) we get

dr
(δ) = ω (δ) ψ + 2ω (δ),

Οχ

and since Q
x
 ζ δ, then

We denote now by Q
x
 the sphere of radius p

x
 with centre at the point x,
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and we complete the definition of the function / at the point χ Ο as
follows:

We shall prove that

\f(x
2
)-f(x

l
)\<C<

a
(\x

2
-x

1
\),

where С = 160n, for all pairs of points x
it
 x

2

 e
 Rn·

Consider first the case when x
t
f S and x

2

 € ^ n \ D . We have

S J

since I у - x 2 I £ pX 2 ^ | * 2 - *i I . then

|г/ — хг\<2\х2

and from the inequality (2.3) we get

i.e.

^ χ 2 - χ 1 \ ) . (2.7)

We now turn to the case where both х
г
 and x

2
 are outside D.

We denote | ж
2
 - «г I = &t_ and let p

X l
 >· p,

2
 , if p

X l
 ̂ δ, then,

denoting by x
0
 the point of D nearest to x

it
 we have

\*ι — ̂ ο|<δ» |x
2
 —a;

0
|<26,

and in view of inequality (2.7)

). (2.8)

If, however, Q
Xl
 > δ, then, denoting as before by x

0
 the point of D

nearest to x
u
 we find that for any point у e Q *

1
U Q*

2

and in view of (2.3), for any such point у one has

|7(г/)-/Ы|< 4ω(4ρ
Χι
)< 16co(Q

Xl
).

We put cp(y) = /(y) - /(*o)· We have

1φ(ί/)|<16ω(ρ
χι
) if y£Q

Xl
[JQ

x
\ (2.9)

Then
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f (x,) - f (Χι) = If (*,) - / (*
0
)J - Ι/ (Χι) - f (Xo)) =

— f(xo)]dy (f(y)—f(xo)\dy

Q
x
l

<f(y)dy J <f(y)dy

2 Q
x
l

ξ 4>(y)dy —
Q
X
2 I

We estimate the modulus of each of the three terms on the right-hand
side of the last equation

φ (у)
(Q

X1
) μ τ ^

Here ω
η
 and σ

η
 are respectively the volume and area of the surface of the

unit η-dimensional sphere. The second term is estimated similarly:

Ι Φ (У)
(2.11)

Finally

ο
16 -

16ηω(ρ.. )
(2.12)

Combining (2.10). (2.11) and (2.12), we get

\f(*J-f(Xi)\<
8О„со

V
'

6 J
^ <1(50ι

ίω
(δ). (2.13)

In conjunction with (2.7) and (2.8) this shows that for all x% and x
2

belonging to A
n >
 we have the inequality

| /(ag-/(*i)!< 1 6 0 ^ ( 1 ^ - ^ 1 ) . (2.14)

Our algorithm of continuation of a function assigns to any function
f(x), uniformly continuous in D, a function F(x), defined in R

n
, and coin-

ciding with f(x) in D. We denote by A the operator carrying / into F:

F = Af.
From (2.2) and (2.6) it follows that the operator is linear, and

inf / (x) < Af < sup / (x). (2.15)
x£D x£D

We can now concern ourselves with the continuation of the quadratic
form.
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LEMMA 2.1. Let the coefficients од of a quadratic form (2.0) be
defined in a domain D. Let the coefficients a^ (i, k = 1, . . . , n) be
uniformly continuous in D, with a convex modulus of continuity (n>ik(r), and
the quadratic form satisfy the inequality (2.1). Then it is possible to
continue the coefficients of the quadratic form to the whole space so that
the modulus of continuity ΩΪ^(Γ) of the coefficient Aik(x)t the
continuation of од, satisfies the inequality

(A;) (2.16)

and for the continued quadratic form we have the inequalities

\Aih\<l, 2 Alh{x)Uh>a 2 й , x$Rn- (2-17)
i, h=i i=l

PROOF. We put Aik(x) = Aaik(x), where A is the operator of continua-
tion previously constructed. The inequality (2.16) is fulfilled in
consequence of (2.14). Because of the linearity of the operator A

2 A
ih
(x)U^ Σ UkAa

ik
(x) = A 2 a

ih
(x)U

h
.

i, ft=l t, fa=l i, k=l

Applying inequality (2.15), we get

2 ^ifc(*)bb 2
 e
ih(*)6i6k

inf ^ = L _ >
i n
f ^ Ξ ΐ _

ν
Zj

the inequality | A,* |̂  1 follows immediately from (2.15), and the lemma
is proved.

If now we have the equation (1.0), whose coefficients од are
uniformly continuous in D, then this lemma, evidently, permits the
continuation of this equation to the whole space, so that the inequalities
(1.1), (1.2) are preserved, and the modulus of continuity of the coeffic-
ients increases not more than 160n times. It is here assumed that the
moduli of continuity are convex functions.

§3. The principal lemma

In this section the following restrictions will be placed on the
coefficients of equation (1.0).

The coefficients од (i, fe = 1, ..., n) have a common modulus of
continuity <i)(r), which is a convex function, and satisfies the condition

5^*-Δ<-. ,3.1,
0

where d is the diameter of the domain D, in which the equation is given.
We shall use the following result of Serrin [l]. Let the equation

(1.0.A) be defined in the sphere QR, R 4. 1. Let SR be the surface of the
sphere QR. Then, there exists a function K(x, χ'), χ e QR, X' e SR , such
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that:
1) for any function φ(*'), defined and continuous in SR, the function

1 Γv(x) = -y— \ Κ (χ, χ')ψ(χ')άσ
μ η 1 Β sR

satisfies the condition

Lu<0; (3.2)

2)

3) 0<K(x, x')<A, x'eS
Rl
 (3.3)

where A is a constant depending on the constant α of the inequality (1.1),
on the constant Δ of the inequality (3.1), and on the dimensionality η of
the space.

We now prove the following lemma.
L E M M A 3.1 (principal lemma). Let a domain D be situated in QR,

R 4· 1, contain the centre 0 of the sphere, and have limit points on the
boundary of the sphere SR. Let Γ be that part of the boundary of the
domain, which lies strictly inside the sphere QR.

There exists a constant M, depending only on the constant Ot of
inequality (1.1), the constant Δ of inequality (3.1) and on the
dimensionality η of space, so that if

^ (3.4)

and in D the equation (1.0.A) is_given, then any positive solution of it
u(x), given in D, continuous in D, and vanishing on Γ, satisfies the
inequality

u(0)<4-maxu(;r). (3.5)

PROOF. From the inequality (3.4), it follows that there exists a
number r, 0 < r < R, such that, if Q

r
 denotes the sphere with centre at

the point О and radius r, and S
r
 is the boundary of this sphere and Г

г
 is

the intersection S
r
D, then

μ
η
- ι Γ

Γ
< ^ μ

η
. ι 5

Γ
. (3.6)

We now, according to lemma 2.1, continue the equation (1.0.A) from the
domain D

r
 = Q

r
 f]D to the sphere Q

r
, so that inequalities (1.1) and (1.2)

are preserved, and the modulus of continuity of the coefficients is
increased by a factor not larger than 160n. Then, П(г) denoting the
modulus of continuity of the continued coefficients, we get

^ P-dr< 160 ΛΔ.
о

We put

'<*>-{ "o
u(x') if χ'ξΓ

τ
,

if i!'€5r\rr.

Further, we put
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Sr

where K(x, x') is the kernel constructed for the sphere Q
r
 and the

continued equation, and having the properties 1), 2), 3).
The boundary of D

r
 consists of Г

г
 and points belonging to Г. On Г

г
 we

have v(x) = u(x), and at points belonging to Г, u = 0, v(x) > 0, and hence
v(x) > u(x). Hence, the inequality v(x) > u(x) is satisfied everywhere on
the boundary of D

r
. Whence, from (3.2), it follows that

и (ζ)< ν (χ) in D
T
.

Hence

α(0)<υ(0) = jj-i-j- J Λ:(0, ж')φ(x')da.

Τ
 Sr

Then, because of the inequality (3.3)

-^-
Ύ
\ K(0, x') q (x') da < ^ max и (x')*C~ max u_(x)

M'n-l'-'r ·ι x'iTr xCD

Sr

and, putting Μ - Ik, we arrive at (3.5).
In the paper [δ] (ρ. 24), we constructed an example, showing that the

restriction placed on the size of the radius R of the sphere QR is essen-
tial for the correctness of lemma 3.1 for η = 2. Of course, such an
example is easily constructed for any n.

To ensure that the lemma remains true for any R (and the constant Μ
does not depend on Д), it is necessary to place restrictions on the
coefficients bi. The simplest of all is to put bi ε 0; here we shall assume
this. Further, we put с s 0, and consider the equation

V η (x\
 d%u

 =r 0 (3 7)
ΔΛ lk\ > Q

Xi
 g

Xk

i,fe=l

The transformation

reduces this equation to the equation
η π

У
 а
. (Rx

1
)
 д
*
и
 — У

ZJ
 lfl

 ̂  ' дх' дх' ΔΛ

with the same constant αϊ in the inequality (1.1). This transformation
changes the sphere QR into a sphere of radius 1, and preserves the ratio

Unfortunately, this transformation alters the modulus of continuity. In
order that the inequality (3.1) should be satisfied for the transformed
equation with the constant Δ, not depending on R, we require that for the
original equation there should be fulfilled the inequality
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2R

^rl
dr<
^. (3.8)

We denote equation (3.7), together with condition (3.8), by (1.0.B).

For sucb an equation we obtain the lemma.

L E M M A 3.2. Let Qfl be a sphere of arbitrary radius R, with centre

at the point 0. Let D be a domain, containing the centre of the sphere,

and having limit points on the boundary of the sphere. Let Г be that part

of the boundary of the domain D, which lies strictly inside the sphere Qfl.

Let equation (1.0.B)_6e given in D, and a positive solution u(x) of it

be known, continuous in D, and vanishing on Г.

There exists a constant M, depending only on the constant Л of the

inequality (1.1) and on the constant Δ of the inequality (3.8), such that

from

it follows that

The problem of the nature of the conditions, which must be placed on

the coefficients bj so that the lemma should remain true, was investigated

by A. A. Novruzov Ы . I shall not dwell here on these conditions. I only

note that the principal of these is the following: We represent equation

(1.0) in the form

η η

+ > b
{
 - h cu = 0,

i = l

η

it is then necessary that the sum Σ bj %i should be positive.

i = 1

The presence of R in the denominator of the right-hand side of

inequality (3.8) is an unfortunate limitation. If the coefficients од

are differentiable, then this limitation leads to the demand that the

derivatives decrease inversely proportional to R. Evidently, this demand

is not necessary, and is connected only with the method of proof. There

are grounds for believing that for the correctness of lemma (3.2), it is

not necessary to demand anything of the coefficients other than the

inequality (1.1). It would be interesting to establish this fact.

In the case when the equation has the self-adjoint form

VI Ά / ди \

this is actually so: the coefficients од may be arbitrary measurable

functions (the function u here satisfies the equation in the sense of an

integral identity). If the coefficients satisfy inequality (1.1), then

lemma 3.2 is correct. This problem will be considered in §§7-8.
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§4. Character of growth of a solution in a bounded domain

T H E O R E M 4.1. Let QR be a sphere of radius R ̂  1 with centre at
the point 0. Let D be a domain, situated inside the sphere, containing
the point 0, and having limit points on the boundary of the sphere. Let Г
be that part of the boundary of the domain D, which is situated strictly
inside QR. Let equation (1.0.A) be given in D. Let, also,

μ
η
θ = σ<»φ, (4.1)

where M is the constant of lemma 3.1, and let a positive solution u be
determined in D, continuous in D, and vanishing on Γ. Then

t

R"-
1

1

u{O)<e
 Γσ

"~
1
 nmxu(i), (4.2)

χζΤ)

where С is a constant depending on the constant 0. of inequality (1.1), the
constant Δ of inequality (3.1), and on the dimensionality η of space.

PROOF. We consider first the case when σ < . We put

•
v
 [ KUia j J ·

where ω
η
 is the volume of the unit η-dimensional sphere.

We denote by Ck (k = 1, 2, ..., N - 1) the sphere | χ \ = jv . We put

m,. = max и (χ) (к = 1, 2, . . ., Ν •- 1).

Let these maxima be attained respectively at the points x
1
, .... x^"

1
 .

We put x° = 0, and m
0
 = u(0).

We denote by Q* the sphere of radius R/N, with centre at the point
** (* = 0. 1 N-l). Let

Let, further, k
lt
 .... k

s
 be those of the numbers 0, 1 N-l, arranged

in increasing order of magnitude, for which

f Η Λ"

The number s of these integers, in view of the inequality

Λ ί - 1

Σ μ
η
^<σ (4.4)

is not less than — N. In fact, in the contrary case, the number of differ-
Δ

ent values of k for which one has the inequality



16 Ε.Μ. Landis

i s not less than

Whence

κ-ι

2. Ми > τ —;

and we arrive at a contradiction to inequality (4.4).
By the inequality (4.3), for each i (i - 1 s), there holds, on

the basis of lemma 3.1, the inequality

m
k- < "o"max u(x),

I ___ —

and since, by the maximum principle,

maxu(.x)<mi,. ,
_ • ' г+1

then

и (0) = m0 < 2"3 мах и (χ) < 2 2 max и (х),

or
1

t <a£~ In 2 p n - l

tt(0)<2"5'

Putting

we arrive at the inequality

^^_
_ _____

u(0)<e
 (σ

"~
1
 maxu(:t).

There remains for us to consider the case when^ μ-QR ___ ω
η
«" ,

Γ

By the inequality (4.1), according to lemma 3.1, we obtain

u(0)<2"
1
maxu(.T).
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On the other hand, we find from (4.5)

Γ
i:a

n
~

Hence, also in this case,

M ( 0 ) -~.e
 Γσ
""

1

xc'i>

and we obtain in all cases

и (0)< e
 r<J

""' max u(:r).

The example constructed in §1.1, chap. I of paper [δ] for η = 2 shows
that it is impossible in this theorem to omit the restrictions, placed on
the dimensions of the sphere Q/j. However, the theorem remains correct for
arbitrary R, if, instead of equation (1.0.A), we consider equation (1.0.B).
Actually, the condition R < 1 in theorem 4.1 is necessary only for the
validity of lemma 3.1; it is not used elsewhere in the proof of this
theorem. But lemma 3.2, analogous to lemma 3.1, is correct for equation
(1.0.B) for any R. Thus, we have the theorem:

T H E O R E M 4.2. Let the sphere QR of arbitrary radius R with centre
at the point О contain a domain D, including the point 0, and having limit
points on the boundary of the sphere. Let Г be that part of the boundary

of the domain D, which is situated strictly inside Qfl. Let equation (1.0.B)

be defined in D, and let

where Μ is the constant of lemma 3.2.
Let, further, a positive solution of the equation be determined in D,

continuous in D, and vanishing on Γ.
Then

1

м(0)<е
 Γσ

"~
1
 max и (./),

χ£ί)

where C is a constant depending on the constant <X of inequality (1.1), the
constant Δ of inequality (3.8), and the dimensionality η of space.

§5. Theorem of Phragmftn-LindeiOf type

We shall say that an unbounded domain D is of the "type with solid
angle size not larger than η " , if, for all integers m, beginning with a
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certain one, we have the inequality
μη(οη<32ηι)

where Q
2K
 is the sphere of radius 2", with centre at the origin of

coordinates Q.
T H E O R E M 5.1. Let D be an unbounded domain, of the "type with

solid angle size not larger than η ", in which equation (1.0.B) is
defined. Let, further,

•η <T I.) Z)

where Μ is the constant of lemma 3.2.
Let there be determined in D a solution u(x) of the equation,

continuous in D, and non-positive on the boundary of the domain D. Then,
either 1) u(x) ^ 0 everywhere in D, or 2), if we put

Μ (R) = sup и (χ),

then

limint-ϊψ-Χ),

A-rA
where К is a constant depending on the constant Ct of the inequality (1.1).
on the constant Δ of inequality (3.8), and on the dimensionality η of
space.

PBOOF. We suppose that there exists a point χ e D, such that u(x) > 0.
We denote by G the component of the set of points χ e D, at which u(x) > 0,
containing the point x.

Let inequality (5.1) be satisfied for the domain D for all m, beginning
with mo.

We put
M

m
 — max и (х)

for all integers m > mi = max (m
0
, [ log

2
 | χ | ] + 1).

Let these maxima be attained respectively at the points

Рог each integer m > *
lt
 we denote by Q

( e )
 the sphere of radius 2""

1

with centre at the point χ(*\ We denote by G
m
 the componeat of the

intersection G Π Q
( l l )

 containing the point x
( > )

.
From inequality (5.1), it follows that

where ω
η
 is the volume of the unit η-dimensional sphere, and from

inequality (5.2), that
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Applying theorem 4. 2 t o GB ала Q ^ , we find

( ) > i t )
7 1 — 1

Mm<e <-

ότι—1 ρ ω η — Ι γ , η — 1 .

= e " n m a x и ( ι ) {m — i u l ~ - i , m^ — 1 , . . . ) .

Whence, according t o the maximum pr incip le , we get

ι 1
n i l 1

Μ <ζ с " ^ωη ^ 1/ <^ е '»εη η — 1 J\J (πι = >Hi ~\- 1, ιιι -\-2ι, ).

(•>•'•>)

Hence, in turn, we find that

ι
Mm > e'lCr*"~l J/,Ui (m = /»!+ 1, ml + 2 ,

By the maximum principle
in —mi logoe iiij

where 2"* 1 < R < 2".
Hence

lOg-if
_ _

I

where aa--M,,,e '·<'">i" ' and R > 2* 1 .

Putt ing

к=-ъЬ •
we finally get

ι

M{R)iR
Kv
<

n
~

[
 > a

Q
 > 0 where Я > 2'"

1
,

which it was required to prove.
C O R O L L A R Y . Let В be a η-dimensional solid angle at the origin of

coordinates, cutting off, on the unit sphere, a domain, whose (n - 1)-
dimensional area is equal to T\ . Let a solution u(x) of equation (1.0.B)
be determined in B, and be non-positive on the boundary of B. There exist
two constants K^ and K^, depending on the constant Л of inequality (1.1),
the constant Δ of inequality (3.8), and the dimensionality η of space,
such that, if \
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either u(x) 4. 0 everywhere in B, or

I

M(R)> R ^

for sufficiently large R.

§6. Growth and decay of the solution at infinity and in
the neighbourhood of a boundary point

T H E O R E M 6.1. Let G be a domain, situated outside some sphere Q
with centre at the origin of coordinates. Let G be of the "type with
solid angle size not larger than T\ ". Let, further, Γ be that part of the
boundary of the domain situated strictly outside the sphere Q. Let
equation (1.0.B) be defined in G, and let η satisfy the inequality

(Λ/ is the constant of lemma 3.1).
Let there be determined in G a solution u(x) of the equation, positive

inside the domain, and vanishing on Γ. Then, if one puts

Μ (R) — sup u(x),

iG

either

or

limsup(M (#)·# Κ η "~ 1 ) < oo,

where К is a constant, depending on <t in inequality (1.1), Δ of inequality
(3.8), and on n.

The proof is similar to the proof of the theorem of the previous
section. Let х

(я)
, Q

(m)
, G

m
 (m = m

t
 + 1, mj + 2, ...) have the same

meanings as in the previous section. Then, as there, we find that for
sufficiently large m (n > m

t
)

(m = m1 + 1, тх + 2, . . . ) . (Η.2)

Unlike what was done in §5, we cannot hence conclude that the inequality
(5.3) is valid.

Here we proceed as follows: from the maximum principle and (β.2)
there follows the validity of at least one of the inequalities

1
1

Mm<e *cV-iM m + 1 (6.H)
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or

M
m
<e ^

n
~

l
M

m
^. (6.4)

Here, if for some m the inequality (6.3) is satisfied, then for all
larger m this inequality will also be true. Thus, either for all m = и* + 1,
mi + 2, ... the inequality (6.4) is valid, or for all m, larger than some
m

2
, the inequality (6.3) is correct.

Hence, either

Μ,„ > г «*»-
1
 M

m 2
 (m = m, + 1, n

h
 r 2,...

or

НЕТ
Af

:H
 < e ifi"-

1
 M

m i
 (m = /и

х
 + 1, m

x
 + 2, . . .).

In the first case

i y X i t for Я > 2 " \

in the second

М(Н)Н
КЦ
 <«, for

where

which it was required to prove.
One can obtain a theorem analogous to theorem 6.1, characterizing the

behaviour of the solution in the neighbourhood of a finite boundary point
of the domain, in dependence on the size of the part of the domain lying
in the sphere with centre at this boundary point, when the radius of the
sphere tends to zero.

T H E O R E M 6.2. Let G be a domain, having the point 0 as a limit
point. Let equation (1.0.A) be defined in G.

Further, let a number T\ exist, satisfying the inequality

•ι
 2

,,.,
f
 .

where Μ is the constant of lemma 3.1, and such that, if, for the integer m,

Q2-B denotes the sphere of radius 2~" with centre at 0, then
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for all m, beginning with a certain one.
Let a solution of the equation, determined in G, be positive inside

the domain and vanish on the part of the boundary situated in the neigh-
bourhood of the point 0, except at the point 0 itself. Then, if we put

Μ (/·) = supu(x),

x£G

either

ι

lim inf (M (,•) /Λ'η ) > 0,

or

limsup(M(r)//-
KT)T1

~
1
) < со,

where К is a constant depending on the constant Л of inequality (1.1), the

constant Δ of inequality (3.1), and on the dimensionality η of space.
The proof is almost a word for word repetition of the proof of theorem

β.1, but, since it is possible to employ lemma 3.1 here, instead of lemma
3.2, the statement proves to be true for equation (1.0.A).

§7. The principal lenaa for the self-adjoint equation

We shall consider the equation

Σ
i,fe=l.

defined in some domain D. We shall suppose nothing about the coefficients
of this equation, beyond that they satisfy inequality (1.1), are
measurable, and have their moduli bounded by unity.

We describe as a solution of this equation, a function u(x) ε Yl\
continuous in D, and satisfying the integral identity

D' i,ft=l

where D' is an arbitrary domain with smooth boundary, contained together
with its boundary in D, and φ(χ) is an arbitrary function of Ψ\ continuous
in D', vanishing on the boundary of D'.

L E M M A 7.1. Let there be situated in the sphere QR of arbitrary
radius R a domain D, containing 0, the centre of the sphere and having
limit points on the boundary of the sphere 5д. Let Г be that part of the
boundary of D, which lies strictly inside the sphere Qfi.

There exists a constant M, depending only on the constant α of
inequality (1.1), and on the dimensionality η of space, such that, if
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(7.2)

and equation (l.O.C) is defined in D, then, for any positive solution u(x)
of it, determined in D, continuous in D, and vanishing on Γ, we have the
inequality

</(())<
 :>
 ш а х и (./•). (7.3)

,v£ Z>

1°. We prove first of all, that, for the validity of this lemma, it is
sufficient to prove it for equation (l.O.C), the coefficients of which a»*
are η times continuously differentiable.

We shall denote such an equation by (1.0.D).
In fact, let the lemma be proved for equation (1.0.D), and let there

be given the equation (l.O.C).
Let equation (l.O.C) satisfy inequality (1.1) for some constant a. Let

the domain D be such that it satisfies the inequality (7.2) with the
constant 2M, where Μ is the constant in inequality (7. 2) necessary for the
validity of the lemma for equation (1.0.D) for a/2.

Let u(x) b£ a solution of equation (l.O.C), which is positive in D,
continuous in D, and vanishing on Г.

We assign an arbitrary ε > 0, and take domains D' and D",
D' С D" С D" С D, with twice smooth boundaries, sufficiently near to D, so
that

1) О е D';
2) the value of u at each point of the boundary of D' differs from

the value of u at the nearest point of the boundary of D by less than ε;
3) if Л' denotes the upper bound of the distance to the point О from

points belonging to D', then

where QR' is the sphere of radius R', with centre at the point 0.
We construct a sequence of equations, defined in D":

L < n v m
, _ γ _a_ ̂

aT
 d^^

 = 0 {m =
 j

 i 2j K

such that their coefficients are π-times continuously differentiable, and
satisfy the conditions

i,ft=l t = l

and

\ (a
ih
 — a)l

l)
)
2
dx~>0 as m— *оо. (7."о

D'

This sequence can be constructed, for example, by means of averaging
the coefficients of the original equation.
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We denote by γ the boundary of the domain D".

Let u^")(x) be a solution of the equation

U
m)
u
m)
 = 0

in D", satisfying the boundary conditions
,,(m) I ,. ι

It |γ = U [γ.

The family |ц("М. by the maximum principle, is uniformly bounded,

and by a theorem of Giorgi [3], is equicontinuous in_D'; hence there exists

a sequence ι/"*)(*) (k = 1, 2 ), converging in D' to some function u*.

We prove that и* = и. It is sufficient for this to prove that the sequence

«/") converges to u in the mean.

This is, however, actually so. In fact, we have

and

D " i, fc = l

Whence

< " ; . /.• =-ι л · ' г. Л---1

1 7 . t i ι

and since there exists a constant C, such that

dxh

du
and besides, from the condition оэ, on applying to the right-

hand side of (7.6) Schwarz's inequality, and using (7.5), we find that

- • 0 as m — - oo,
,),r

h

whence it follows that

;J ι/ /V ' " i -» ^ () Й.Ч /// —• ̂  X!-
1

Ί U.jy

Let ε be sufficiently small so that u(0) > ε. Then, for sufficiently

large m

For each such m we take the set of points χ e D' at which u^ (χ) > ε.

We denote by D^ the component of this set containing the point 0. Prom

the inequality (7.4), it follows that
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and then, for the function

by our hypothesis that the lemma holds for equation (1.0.D), it follows

that

тахм
<т)
(а;)>2и'

<т)
(0),

i.e.

шах и > шах и (χ) > 2и (0) — ε,

and, because ε was arbitrary,

шах Μ (χ) > 2u(0),
χ£Ϊ)

and our statement is proved.

2°. Thus, we shall prove the lemma for equation (1.0.D). In this

paragraph we carry out a further reduction: we denote by D
o
 the set of

points χ e D OQR, where QR is the sphere of radius — R with centre at
о ~n 2

1
the point 0, at which u > -r-u(O). Besides the inequality (7.2), let there

be satisfied the further inequality

μ д
ц >
 М?к

 (7
 7̂

and let the lemma be true under this hypothesis. We prove that it is true

without the hypothesis (7.7), if we take a larger constant: ?PM instead of

M.
Suppose that for the domain D condition is not satisfied. For each

r(0 < r < R), we put

Μ (/•) = max и (χ) — и (х
т
)

(considering the origin of coordinates to be the point 0).

We prove that for any r ί 0<r--ч — ) * there exists Δ

ί 0 < Δ<-2" j . such that

+ ^ · '7.8)

We introduce the following notation:

Q" is the sphere of radius fi/2"
+1
 with centre at the point x

r
;

2" -1
B" is the set of points χ e D, where u(x) > — Л/(г);

2

D£ is the component of the intersection β" Π Q£ , which contains the

point x
r
;
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Since, by our hypothesis, condition (7.2) is satisfied for the domain
D with the constant 2

n
M, then

Suppose, further, that for some m, condition (7.7) is not satisfied
for the domain D} and the sphere Q£ . Then

Finally, there exists m
0
 such that for the domain O?° and the sphere

Q?° the inequality (7.7) is satisfied. This can be proved as follows. At
the point x

r
 we have grad u 4 0. Actually, x

r
 is on the surface of the

sphere Q
r
 of radius r with centre at the point 0, and at it, according to

the maximum principle, there is taken the largest value of those, which
are taken in that part of the domain which lies inside Q

r
, according to the

strict form of the maximum principle u(x
r
) being strictly larger than the

values taken by u inside Q
r
 . D. But from this it follows that (cf. [lO])

at the point x
r
, ~~ > 0.

The function u, being a solution of equation (1.0.D), is twice con-
tinuously differentiable (and even a greater number of times, but this is
immaterial at present). Hence the level surface, passing through the
point x

r
, is in its neighbourhood a twice continuously differentiable

surface. Therefore there exists mo· such that there is a sphere of radius
J?/2"

0+r
, with the point x

r
 on its surface, and which at all remaining

points lies in the domain given by u(x) > M(r). But then this sphere is in
Df for any m, and hence

i.e. for this m
0
 inequality (7.7) is satisfied.

Prom all this it follows that there exists л^ such that

μ>ι

Μ

and the inequality (7.7) is satisfied for the domain D^
1
 and the sphere (ft

By our hypothesis, the lemma is true in this case. We apply it to the
function u"

1
, and obtain

max и"! (χ) > 2u?y (x
r
) = ^ [ ,

.v£D',"l
 l

or

Μ { 'Ч- -̂ ггг ) > max MJ"I (Ж) Η -—• Μ (г) > Μ (г) \)

It remains to put Δ = Л/2"
1
*

1
.

But, from inequality (7.8), it follows that
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Actually, let г
г
 be the upper bound of all г г? Е, such that

M(r)>u(0)(lf£.y (7.9)

If Γ! < \R, then

and we arrive at a contradiction to the hypothesis that r
x
 is the upper

bound of r, for which (7.9) is satisfied. Thus, r
x
 ^ — Л , and this means

that

Μ (/·,)> 2и(0),

and our assertion is proved.

3°. We pass on to the proof proper of lemma 7.1. In accordance with

1° and 2° we shall prove it for equation (1.0.D), under the additional

condition (7.7).

Since equation (1.0.D) is homogeneous, and the magnitude of the

derivatives of the coefficients does not interest us, we can make a

similarity transformation, and instead of the sphere QR of arbitrary

radius consider a sphere of any fixed radius. It is convenient for us to

consider the sphere of radius 2. We denote it by Q
2
, and denote the con-

centric sphere of radius 1 by Q
t
.

Let inequality (7.2) be satisfied for some M. Let a solution of

equation (1.0.D) be determined in D, which is positive in D, continuous in

D, and which vanishes on Г, and let inequality (7.7) be satisfied. We show

that for sufficiently large Μ (depending on α and n) (7.3) is correct.

We now make use of the property of u(x), as a solution of equation
(1.0.D), being η + 2 times differentiable (it is essential for us that it
be η times differentiable). By a theorem of the paper of Kronrod and Landis
[ll], an n-times differentiable function of η variables has the property
that the set of points of the domain of definition, where the gradient of
this function vanishes, is mapped on the number-axis in a set of measure
zero.

We put Di = D Hi?!. Further, for every t (0 < t < u(0)), we denote by
B

t
 the set of points χ e D, at which u(x) > t. and put G

t
 = B

t
 Π Q

t
. We

denote by Y
t
, that part of the boundary of the set G

t
, which lies strictly

inside Qi. Consider the integral

where η is the inward normal to G
t
. By the quoted theorem of Kronrod-

Landis, for nearly all t (0 < t < u(0)), Y
t
 is a smooth (n - 1)-dimensional

manifold ~- > 0, and thus for nearly all t, this integral has a meaning,

and is positive (or equals GO).
u(0)

Let us now consider \ I(t)dt.
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This integral does not exceed the volume of the domain D
lt
 and hence, by

inequality (7.2),

(ω
η
 is here the volume of the η-dimensional unit sphere).
Whence it follows that there exists t

0
 such that

^
|/()) <

 ШЩ '
i.e.

ί̂σ .. 2ω
η

) du ̂  Mu (0) '

One can here select t
0
, so that the set of the level u(x) = t

0
 does not

contain points at which grad u(x) = 0.
Applying Schwarz' s inequality, we find then

С du , Mu(0) , ., ,
r m

5 -θη
άσ
>~Ί^Τ^-Δ\Υ-- (7.10)

We now use the property that, for a domain lying inside an n-dimen-
sional sphere with volume less than the volume of the sphere divided by
2", it is correct that the part of its boundary lying strictly inside the
sphere has (n - 1)-dimensional measure not less than 1/2" times the entire
measure of the boundary of the domain.

If we suppose that
Μ > 2",

and denote by Γ\ο the whole boundary of G t o, then, by what has been said

and, by the isoperimetric inequality,

1 —
μ»-ιγ<ο > Г » (i*

n

G
'e) "

Since, by inequality (7.7)

then
τι—1

,ι-ιΥ'ο >

23n-M n

and we get from (7.10)
?i-2

W . (7.11)
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We denote by δ
ί ο
 that part of the boundary of B

to
, which lies strictly

inside Q
2
. Then

We denote by С*
о
 the part of B

t o
 situated in the spherical layer Q^\Qi·

Let Σ be some piecewise smooth surface, separating in Ct
0
 the sphere

| χ | = 1 from the sphere | χ \ = 2 (any continuous curve having limit points
on both spheres certainly intersects Σ ) .

Thus, Σ together with part of 6
t o
 bounds some subdoraain of the domain

B
tQ
, containing G

to
- We denote it by G. The boundary γ of this domain in-

cludes in itself all γ
ί ο
, and besides, contains points belonging to 6

t o

and Σ. Let γ' = (γ Π 6
t o
) \ γ

ί ο
. and γ" = γ Π Σ.

We consider the equation

С \\ d f ди Л ,

.1 ̂ - όχι \
 lh

dx
k
 J

G

and applying Green' s formula to the left-hand side, we obtain

\ -^~ άσ—\ —— άσ
 Λ
- \ -j— do + \ -j— da = 0,

у y,
o
 ν γ

where ̂ - is the derivative along the normal fe-

being the direction cosines of the normal).
Since

η

Σ
i,k= 1

С du , . С ди
\ -5— do > a \ -r— ι
J θν \ dn

Yi Yi

Эй
and ô r > 0. then

С ди , I Г ди . С ди_

У"
-υ

and, applying inequality (7.11), we find
t f — L'

аи (0) ω,,"

da

\ 7.12)

Our lemma will be proved, if we are able to show that the surface Σ
can be always selected so that

du
da < ΓΓ «>sc и (•'•),

where С is a constant depending on (X and on the dimensionality of space.
This is a consequence of a general theorem of analysis (in a certain sense
analogous to the theorem of Lagrange about the derivative at a point of an
interval for a function of one variable).

This theorem will be proved in the next section, and thus the proof of
lemma 7.1 will be completed.
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§8. A theorem of analysis

The theorem of this section was proved by M.L. Gerver and myself [12].

T H E O R E M 8.1. Let a domain D, μ,β < 2
п
ш

п
/М, be situated in the

spherical layer S = { 1 .< \x\ < 2}. Let the domain D have limit points on

both spheres \x\ = 1 and |x| = 2, and let that part of its boundary, which

is situated strictly inside D, be a smooth surface.

η

Let there be defined the quadratic form Σ α ^ Μ ^ ί ^ in the
i.k = 1

domain D, satisfying the inequalities

Σ a
ih
(x)l

i
l
h
>a^ II

 a
>

0
· l«iJ<l. (8.1)

i./u-.-l i=l

the coefficients of this quadratic form being continuously differentiable
functions in D. _

Further, let there be defined in D a function f(x), twice continuously
differentiable, and satisfying the condition

osc/(;r)<l. (8.2)

Then, there exists a piecewise smooth surface Σ, separating in D the
sphere \x\= 1 from \x\= 2, such that

\ Σ "i^i

where С is a constant depending on the constant OL of inequality (8.1) and
on the dimensionality η of space (Yi being the direction cosines of the

normal to the surface).
For the proof of the theorem we require the lemma: _
L E M M A 8.1. We denote by Ω the set of points χ e D, where grad / = 0.

Then, this set can be included in a finite number of spheres Qi, ..., Qn·
such that, if S

m
 denotes the surface of the m-th sphere

ί 1 da < I.

PROOF. We divide the set Ω into two parts: we attribute to the set
Ω' those points of fi, in which the second differential d

2
f is not zero,

and to the set Ω" those points of Ω where d
2
f = 0. The set Ω' has

measure zero, since all points at which it is dense belong to Ω".
We take some ε > 0, and include Ω' in an open set G, of measure less

than ε.
We cover each point χ e Ω' by a sphere K'

x
 with centre at this point

and contained in G, and let 5^ be the surface of the sphere Q* concentric
with K'

x
 with diameter five times as large. We evaluate

\ I grad / I da.

•
s
.'v

Since / is twice continuously differentiable in D, then all its
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second derivatives have bounded moduli. Let L be a constant bounding them.
Since at the point χ we have grad / = 0, then ||grad f \\s'

x
 < Lr

x
, where

r
x
 is the radius of S'

x
. Whencer

x
 is the radius of S

x
.

\ I o-vad/ j da < Lrx\in_\ S'x — 5" //Ζ,μ,,Α".!. (8.4)

s
.'v

We select from the aggregate of spheres \K'
X
\ a countable set

Κ'ι, .... K'
n
, .... such that these spheres are mutually disjoint, and the

(open) spheres concentric with them with five times the radius

< ? , , . . . , < ? ; „ , . . .
cover all the set Ω', This can be done by applying the process of Banach:
we take from [K'

x
\ a sphere whose diameter exceeds half the upper bound of

the diameters. We denote it K^. We reject all the spheres intersecting it.
From the remaining spheres we take a sphere whose diameter is greater than
half the upper bound of the remaining spheres. We denote it by К'

й
, etc.

By reason of (8.4) we get
oo

2 [ I grad /1 da < 5" nLz. (8.5)

We denote here by S'
m
 the surface of the sphere Qn·

Let now χ e Ω". Since at this point both first and second differentials
vanish, then there exists a sphere Q

x
 with centre at the point x, such that

everywhere on its surface

| grad/| <zr
x
,

where r
x
 is the radius of this sphere. In this connection one can select

the sphere so that r
x
 < 1. Denoting by K

x
 the sphere concentric with, and

radius one fifth that of, Q'
x
. Then

l (8.6)

Just as before, we select from the aggregate { K
x
l of spheres a countable

number
K\, ..., Km, ...

of mutually disjoint spheres such that the concentric spheres with five
times the radius

Q\, ..., Qm, ...

cover all Ω".
In view of (8.6), and considering that K'^ does not go outside the

limit of the sphere |
 x
 \ ̂  2 + -, we get

\ 5«7
1
e

M r t
(2+i-)

n
=ll'

l

r e M n
e; (8.7)

m=l e"°e°m

•S. is here the surface of the sphere Q*. <·>„ is the volume of the unit
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n-dimensional sphere. Combining the spheres I Q'
n
 i and IQ'nl we get an

aggregate of open spheres, covering the closed set Ω = Ωι U Ω2· We select

from them a finite number. Let these spheres be Q
lt
 ..., Qy, and their

surfaces be S
x
 Sp/ respectively.

If we select e = 1/(5" nL + 11"ηω
η
), then, from inequalities (8.5) and

(8.7), we get
N

2 ξ |grad/|tf<j<l,

which it was required to prove.

We now proceed to the proof of the theorem.

First of all we find, corresponding to the lemma, spheres Qi Qiv.
and exclude them from the domain D. We put

£>* = Ζ>\Σ Q
m
.

m=l

We form the intersection of D* with the closed spherical layer

1- j? \ x\ 4 1^ · We denote this intersection by D'.

8 8

D' is a closed set, and everywhere in D'. grad / = 0. Hence,
I grad / I > β, β > 0.

We continue f(x) from the set D' to some neighbourhood of it in an
arbitrary twice continuously differentiable manner.

We continue also all coefficients α ^ of the quadratic form to some
neighbourhood of the set D' in an arbitrary continuously diffentiable
manner. We take now the δ-neighbourhood Di of the set D' with δ (< 1/8)
sufficiently small so that in D'

s
 the continuation of / is defined (we denote

it by the same letter / ) ; / satisfies in D'
b
 the condition (8.2), and

I grad / I > β in D'
b
. besides, δ is sufficiently small so that in D'

s
 the

continuation of the coefficients of the quadratic form is determined (we
denote them also by a ^ ) , and satisfy inequality (8.1) there, and finally,

ί 2" ы
к
/М.

In D'
b
 we consider the system of ordinary differential equations:

fc=l

We consider the scalar product of the vector of the right-hand side

with grad /. We have

С У a
 df

i, ft=l

Prom this inequality follows, firstly, that in the domain D'
s
 there are

no stationary points of the system (8.8) (since grad / 4 0 in it), and

secondly, that the direction of the field forms with the direction of the

gradient at the given point an angle not a right angle, the modulus of

the cosine of this angle being larger than a constant, depending on (X:

Let I(x) be the direction of the field at the point x; then
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|cos(l(x)?grad/)i>C(a)>0. (8.9)

If pi denotes the derivative in the direction of the field, then,

remembering that | grad / | > β in D$, we get from (8.9)

%-\>C(a)\gradf\>C(a)V,. (8.10)

It hence follows that in Dj there are no closed trajectories of the
system (8.8), and all trajectories have uniformly length, and are
described in uniformly bounded time. Let L be a constant, bounding the
length of the trajectories, and Τ a constant, bounding the time of motion
on a trajectory.

Let the surface S be tangent to the direction of the field at each
point of it. Then

S i, ft=l

since the integrand is identically zero (here, as before, Yi are the
direction cosines of the normal to 5).

We use these in the construction of the surface Σ , which we require.
The ruled surfaces, whose generators are trajectories of the system (8.8),
form the basis of Σ. In the integral of interest to us, they contribute
nothing. These surfaces will have the form of walls of thin pipes, which
overlap and cover all D'. Then, in some pipes we insert partitions. On
these partitions our integral will not be equal to zero, but we shall be
able to make it not very large. We now begin the construction of the pipes.

We shall find a number η (0 < η < - δ ) , satisfying the following
2

conditions: for any pair of points x
it
 x

2
 e Z)j, for which | Χχ - x

2
 | < η :

1) there is satisfied the inequality

| grad / (χ,)-grad/(^
2
) |< |-; (8.11)

2) the angle between the directions of the field at Χχ and x
2
 is less

than - π ;

2) let yx and y
2
 be points, at which we find ourselves moving on the

trajectories from the points χχ and *
2
 respectively at the same time t < T.

Then | yi - у
2
 I < - δ .

Let the number r\, besides, be so small that the following condition
holds:

4) let Χχ and x
2
 be two arbitrary points on one trajectory of the

system (8.8). Through each of these points draw an (n - 1)-dimensional
hyperplane orthogonal to the trajectory. Then, if one takes in each of
these hyperplanes a (n - 1)-dimensional sphere, with centre at χχ and x

2

respectively, and radius equal to η , these spheres do not intersect.
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Condition 1) can be satisfied because of the uniform continuity of grad

grad / in D'
s
. Condition 2) can be satisfied by the uniform continuity of

the field. The possibility of satisfying 3) follows from the uniformly

continuous dependence of the solutions of the system (8.8) on the initial

conditions. Finally, condition 4) can be satisfied since thejright-hand

sides of the system (8.8) are continuously differentiable in D'
s
, and hence

the trajectories have uniformly bounded curvature.

We now find Ci such that, for any pair of points x
it
 x

2
 e D' satisfying

the ineauality I *i - x
2
 I < Ci. the trajectory passing through the point

x
2
 does not leave the -^--neighbourhood of the trajectory passing through

through the point x
im

Further, we take a number d (0 < ζ
2
 < d ) , such that for any point

xi € D', and any point x2 on the (n - 1)-dimensional hyperplane passing

through the point xi and perpendicular to the trajectory through xlt
whenever the distance between the points *i and x2 is not less than

1 *·
-c,i, it follows that the trajectory passing through x2 lies outside the

С 2'neighbourhood of the trajectory passing through xj,.

The existence of numbers Ci and Сг with these properties follows

from the uniform boundedness of the lengths of the trajectories (by the

constant L ).

We introduce the following definitions.

We consider some point χ e D', and draw through it a trajectory I. We

denote the --neighbourhood of D' by Z)j .

2"

The trajectory 2 at both ends reaches the boundary of D'
s
, and hence

intersects the boundary of D'
s
 . We denote the points of intersection of Ζ

Ί
with the boundary of D'

s
 , which are nearest (on the curve I) to the point

x, by *i and x
2

:
 the point x

2
 being situated from χ on the side corres-

ponding to a positive change in t, and χχ on the negative side. Suppose

that we reach the point x
2
 from χ in time t

2
, and the point xj. from the

point χ in time t
t
. We draw an (n - 1)-dimensional hyperplane through χ

orthogonal to I, and in this hyperplane we take a domain (0 with piecewise

smooth boundary σ, lying inside the sphere of radius Ci with centre at

the point x. Through each point у е ω, we draw a trajectory, and denote by

l
y
 the portion of this trajectory, which is covered on moving along the

trajectory from the point у in the positive direction for a time t
2
, and

in the negative direction for a time tj.. The set-theoretic sum Τ of the

curves ly, when у covers ω, is called the pipe generated by ω (Τ = U l
y
)·

у
 e

 <·>
In the same way, we define l

y
 for yea. The set-theoretic sum С of

the curves I
v
, when у describes σ (С = U ly) is called the wall of the

' у ea
 J

pipe T. The piece of the trajectory I between x
x
 and x

2
 is called the axis

of the pipe T. We note that the axis of the pipe may lie outside it.
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It follows from these definitions that the wall of a pipe is a piece-

wise smooth (n - 1)-dimensional surface, and that the pipe Τ lies in the

--neighbourhood of its own axis I (the latter follows from the definition

2
Of

We now construct a finite number of pipes 7\ r
s
, with walls

C
u
 ..., C

s
 respectively, having the following properties:

a) D'dU (T
t
 U C

t
)

i = l

and
b) 7\ П ^ = 0 if i Φ j.

To do this, we take a finite C
2
-net in D'. Let x° x° be points

of this C
2
-net. We draw through each point x° an (n - 1)-dimensional

hyperplane K{, orthogonal to the trajectory through this point. We denote

by U)J the (n - 1)-dimensional sphere in this hyperplane with centre at the

point x° and radius - d . We further denote by 7^ the pipe generated by

c/ , the wall of this pipe by C'
it
 and its axis by Zi. C

2
 is taken so that

the Ca-neighbourhood in D' of the axis of the trajectory Zj is contained

in the pipe Γί. Hence

D'с U (.пис'о.

However, these are still not those pipes, which we require, since they

intersect.

It would be possible to take all possible intersections of such pipes,

if the number of components of such intersections were finite. However, we

cannot assert this, a priori, and hence we must somewhat complicate the

construction.

We put 7\ = T[ (Ct = C[, Zt = l'
lt
 correspondingly).

If Γ
2
 Π Γι = 0. then we put T

2
 = Γ

2
. If, however, Γ

2
 Π Γι 4 0. we

proceed as follows. We consider the hyperplane π
2
. We put τ

2
 = Γ

χ
 Π π

2
.

The set τ
2
 is an (η - 1)-dimensional domain with a smooth boundary

homeomorphic to an (n - 1)-dimensional sphere. Also ω
2
 Π τ

2
 4 0. We con-

sider the difference

ω
; ν

2
. (8.12)

If this difference consists of a finite number fe
2
 of components, each

of which has a piecewise smooth boundary, then we take them as

ω
2
 ω*

2 + 1
, and construct on them the pipes T

2
 Гь

2 + 1
, taking Z

2

as the axis of each of these pipes, so that li = Z
2
 (i = 2, ..., k'

2
 + 1).

If the difference (8.12)is not of this form, then instead of ω
2
 we

take a larger (n - 1)-dimensional domain ω
2
 Э ω

2
 so that the boundary of

ω
2
 is smooth, and ω

2
 is contained inside a sphere of radius d with centre

at the point x%, and so that for ω
2
 the difference

»;v, (8.i3)

should now consist of a finite number fc
2
 of components with piecewise
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smooth boundaries
1
. We take them as ω

2
, ..., (0(£+i and construct the pipes

T
2
 T ^

+ 1
 as before.

T\ U Ci together with the pipes constructed at this step and their
walls cover all that part of D', which was formerly covered by 7\ U d and

г
2
 и с

2
.

Suppose that we have constructed the pipes Г
1 (
 .... Τι covering

together with their walls all that part of D', which is contained in the
я I

sum U (Т\ \JC'O. Let us consider the pipe T'
m+1
. If Γ;

+ 1
 Π U T

l
 = 0.

i = 1 j i— 1
we take Γ/

+ 1
 = T

m
+i· If. however, Γή+ι Π U ϊ\ ̂ 0, we then proceed as

i = 1
 Ζ

follows. We consider the hyperplane κ
η+ί
, and put τ

Λ
+ι = Τΐ,,+j, Π U ̂ i·

ϊ= 1

This is, in general, an open disconnected set. In the neighbourhood of
ωή+ι, the boundary of the set τ

η + 1
 is piecewise smooth. We take the differ-

ence

^.V,
(1
- (8-14)

If t h i s d i f f erence c o n s i s t s of a f i n i t e number fen+i of components,

each of which has a p iecewise smooth boundary, then we take them as

ωΐ+ι, . . . . Щ+kln-n· and construct on them the p i p e s Tj+i. · · · » ^ H ^ + i ·

taking Z^+i as the a x i s of each of these p ipes ( I t = lm+i, i == Ζ + 1. . . .

If the difference (8.14) is also not of this form, we then take instead
of ω^+! a larger (n - 1)-dimensional domain ш'п+ι з ωή+ι, so that the
boundary of ω^+ι is smooth, and ω^+ι is contained inside the sphere of
radius d and centre at the point x£+i. and so that for ω£

+ 1
 the differ-

ence

«Wl\
T
m

+
l (

815
)

will now consist of a finite number fe^+i of components with piecewise
smooth boundaries

2
. We take these as U){ + i

 ω
Ι

+
*»+ι·

 ω ( 1
 construct the

pipes Γι+з. Tl+kb+i. as before.
Then

/ l+km>i

U (Τι U С г) + Т;п+1 + Сп+l С . U (Ti U Ci),
г = 1 г = 1

and after r steps we construct the pipes T
1 (
 .... T

s
, satisfying the

conditions a) and b).

We term 7\ a "through" pipe, if its axis Z{ intersects each of the

spheres | χ \ = 1- and | * | = 1-. For each " through " pipe Ti we consider
8 8 1 7

all segments of Ii between the spheres | χ \ = 1- and | χ | = 1-, and denote
8 8

the fe-th of them by l\
k)
 (k > 1).

We denote by !|** the segment of l№ between the spheres

1 The existence of such a domain should be proved. The proof of th i s i s not very
dif f icult, but rather laborious. We leave i t t o the reader.

2 See above.



Some problems of qualitative theory of second order elliptic equations 37

x 1 = 1 - and | χ I = 1- (if there are several such segments, then we take
4 4

an arbitrary one of them). Let xS*' and x\\> be the ends of l\*>. We have

Ъ f ''
( o ; is the derivative along the curve).

Or

Prom inequality (8.10), it follows that the sign of ̂ is always

constant on the trajectory, hence

? df_ ,,_,,,
 (ft)

v ,
 (h

and, from this same inequality (8.10), we obtain

We denote by E[
k)
 the set of points χ e l[

k)
, at which

Or, noting that osc / < 1:

grad/ |dZ< * . (8.16)

^ . (8.17)

Since the length of lW is not less than—, then from (8.16) we get

μ χ Μ Μ > | . (8-18)

We draw through each point χ e E^ an (n - 1)-dimensional hyperplane
n^i.fe) orthogonal to lW at the point x, and denote by v^

1
'** the com-

ponent nearest to χ of the intersection of л£
1
·*) with the pipe Ti. Since

the pipe Ti lies in the -^-neighbourhood of l
it
 then, by the choice of η

(conditions 2) and 4)) v<
l>
*> is situated in the η-neighbourhood of the

point x. Hence, from the inequalities (8.11), (8.17), and because
|grad / |> β everywhere in D'

s
, it follows that

(8.19)

We consider

As a consequence of conditions 2) and 4) for the choice of η , we
obtain Σ Ι μ

η
-ΐ«

(
χ

1
·
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and this means that, by (2.18), there exists a point хЬ
г
'
к
^ е £*, such

that

h Ao

(i)
( Dy u)i· rrom (u.i»; ana

64

We denote U» ((|) by v>i. Prom (8.19) and (8.20), we find
ft о

If Ti is not a "through" pipe, then we shall consider that v>i is

empty.

We now put ,

Σ = U (<МН).
i=l

The set Σ, being the finite sum of piecewise smooth surfaces C; and
v>i, is a piecewise smooth surface. Besides, Σ separates in D the sphere
| д : | = 1 from the sphere | χ | = 2. In fact, let I be a curve contained
in D, and having limit points on both spheres | χ | = 1 and | χ | = 2.

We suppose that ϊ Π U C^ = 0. Then the intersection Ι Π D' is contained
i = l

in some one pipe Ti, and moreover, this pipe, evidently, is a "through"
pipe, and hence, Zj certainly intersects v>i.

On the other hand

Σ i, A=l

da =

i, ft=i i =l to. i = l

s
But Σ μ ι Ti does not exceed the volume of Di. Hence

i = 1

5 1 2
Σ i, ft=:

dx
h

da<
С

Μ

where the constant С depends on α and on n, which it was required to prove.

§9. Theorems on the growth and decay of a positive solution
of a self-adjoint equation

The theorems of §§4-6 were all consequences of the principal lemma
and the maximum principle, and consequently are valid under those hypo-
theses, for which the principal lemma (and the maximum principle) is valid.
Since for equation (1.0.C) we proved the principal lemma (lemma 7.1)
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without any assumptions relative to the coefficients aik except the
inequality (1.1)). it follows that for equation (1.0.C), the following
theorem holds:

T H E O R E M 9.1. Suppose that a sphere QR of arbitrary radius R with
centre at the point 0, contains a domain D including the point О and
having limit points on the boundary of the sphere. Let Г be that part of
the boundary of the domain D, which lies inside QR. Let equation (1.0.C)
be defined in D, and let

where M is the constant of lemma 7.1.

Further, let u(x) be a positive solution of equation (1.0.C) in D,

continuous in D, and vanishing on Γ. Then

ι
H"-I

~~ ι
и (Cft <^ P Ca

n
~
l
 ma-r it (r\

x£D

where С is a constant depending on the constant flt of inequality (1.1), and
on the dimensionality η of the space.

THEOREM 9.2 (Phragmen-Lindeluf type). Let D be an unbounded
domain, of the "type with solid angle size not larger than η ", and let
the equation (1.0. C) be defined in it. Further, let

_ 1

where Μ is the constant of lemma 7.1.
Let there be determined in D a solution u(x) of the equation,

continuous in D, and non-positive on the boundary of the domain D. Then,
either 1) u(x) 4 0 everywhere in D, or 2) if we put

Μ (R) = sup и (χ),

then

inf -
R-*a>

where К is a constant, depending on the constant α of inequality (1.1)
and on the dimensionality of the space.

T H E O R E M 9.3. Let G be a domain lying outside some sphere Q with
centre at the origin of coordinates. Let G be of the "type with solid
angle size not larger than τ\ ". Let, further, Γ be that part of the
boundary of the domain G, which lies strictly in the exterior of the
sphere Q. Let equation (1.0.C) be defined in G, and η satisfy the in-
equality

Ш is the constant of lemma 7.1).

Let there be defined in G a solution u(x) of the equation, continuous
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in G, positive inside the domain, and vanishing on Γ.
Then, if M(R) has the same meaning as before, then, either

liminf (M(R)/R
Kj)n
 ) > 0 ,

or

liminf (M(R)-R
Kr]n
 )<oo,

ii-coo

where К is a constant, depending on the constant a of inequality (1.1),
and on the dimensionality η of the space.

Chapter II

PROPERTIES OF SOLUTIONS WITH CHANGING SIGN

§0. Introduction

In this chapter we shall consider the equation

η η

Lu= 21
 α
ί<>(*)3ϊΓέ-

+
ΣΜ

χ
)-£^ +

 β
(*)" =

 0
· -(1.0)')

concerning the coefficients we shall suppose that the а д are twice con-
tinuously differentiable, and the remaining coefficients are continuously
differentiable, and these coefficients and their derivatives up to the
order mentioned, inclusive, have moduli bounded by unity. Besides, we
shall suppose that there are fulfilled the inequalities

ν
 ί α

^ >
α
ν ξ ί . «>o (l.i)

t, fc=l i = l

and

c<0. (1.2)
It should be noted that for the principal results of this chapter,
inequality (1.2) is not essential (boundedness of the moduli of the
coefficients is sufficient). However, for the sake of simplifying the
proofs, we shall require that it ia satisfied.

Equation (1.0) with these properties is denoted by (1.0.E).

§1. The uniqueness theorem

Latterly a large number of papers have been concerned with the problem
of the uniqueness of the solution of Cauchy's problem for the elliptic
equation of the form (1.0.E), or a more general one; we shall here be
1
 We assign to formulae (1.0), (1.1), (1.2) in this chapter the same numbers as

in chapter I.
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concerned only with the equation of the form (1.0.E). The problem is posed

thus:

In the domain D (fig. 3) a solution of

equation (1.0.E) is determined, continuously

differentiable up to the boundary. On the piece

S of the boundary there is satisfied u \
s
 = 0,

5- = 0. To prove that и m 0 everywhere in the

domain D.

Using an observation of Hadamard [l3], in

proving the uniqueness theorem for Cauchy' s

problem for linear equations, we prove it by

this means too for nonlinear equations.

In the case of analytic coefficients this
 p i 3

uniqueness theorem is a consequence of a

general theorem of Holmgren [14], proved by him in 1901: for equations of

Kovalevsky type with analytic coefficients, the solution of Cauchy's

problem is always unique in the class of sufficiently smooth functions (in

the given case continuously differentiable).

In the case of nonanalytic coefficients the position was as follows.

For two independent variables (for general elliptic systems) the

uniqueness of the solution of Cauchy' s problem was proved by Carleman in

1933, [l5], [38]. Then, for a long time there was no advance in this

problem. After 20 years, beginning in 1953, there began to appear papers,

in which the uniqueness of the solution of Cauchy' s problem was established

for the equation

Δ Μ + . . . =0

with several independent variables (Douglis [l6], Hartman and Wintner [l7],
Muller [18], Heinz [19]).

Beginning with 1956, there appeared a series of papers, in which the
uniqueness theorem for the solution of Cauchy' s problem was proved for
equation (1.0.E), Aronszajn [20], [40], Cordes [21], Landis [22],
M.M. Lavrent'ev [23].

The interest in the uniqueness of the solution of Cauchy' s problem has
not diminished since the series of papers on the uniqueness of Cauchy' s
problem continues (Calderon [24], HiSrmander [25], [26]). An interesting
analysis of the methods of proof was given in a seminar of Laurent
Schwartz ( i t is published in the proceedings of the seminar in 1960).

The theorem of uniqueness of the solution of Cauchy' s problem for elliptic
equations of the second order is not a general fact, true for all systems of
equations, as this holds in the case of analytic coefficients (theorem of Holmgren).
For systems of equations, including elliptic (and also for one elliptic equation
of higher order) there may not be uniqueness of the solution of Cauchy' s problem.
The first example of a system (parabolic), for which there is not uniqueness, was
constructed in 1947 by Myshkis [35]. An example of such an elliptic system was
given by PI is [зб] in 1960.

Perhaps for equation (1.0.E), i t would be more natural to speak not of
the uniqueness theorem for the solution of Cauchy' s problem, but of
uniqueness theorems of the type of uniqueness theorems for analytic
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functions. The null conditions of Cauchy are somewhat strong. It is

sufficient to demand that at an interior point of the domain the solution

tends to zero faster than any power (Cordes [2l]) or that on the boundary

of the domain at some point x
0
 the solution u(x) and its normal derivative

Ъи(х)
tends to zero along the boundary faster than

where C is some constant (Landis [22], Μ. Μ. Lavrent'ev [23]. The latter

obtained a more precise value of the constant С: 2 + δ, δ > 0).

Another form of the uniqueness theorem gives the admissible rate of

decay of the solution at infinity: let the solution u(x) of equation

(1.0.E) be determined in the cylinder unbounded on the right

Jx\< Λ x
x
 > 0,

and satisfy the inequality

\u\<e-<
Cxi

where С is some constant, depending on the equation and on r.

Then и = 0 (Landis [22]).

We note that there exists a harmonic function not identically zero,

decaying with speed e"
e
 (Re e~

e
 in the strip 0 < у < к).

The problem of the continuous dependence of the solution of Cauchy
1
 s

problem on the initial conditions is more interesting from the point of

view of applications to other problems of the qualitative theory. An

example by Hadamard is known, showing that, in the case of Cauchy' s

problem for Laplace' s equation, there is no continuous dependence on the

initial conditions in the usual sense.

However, it appears that in the class of uniformly bounded solutions

there is a continuous dependence on the initial conditions (for Laplace' s

equation this was previously known to Carleman). The mechanism of this can

be explained as follows. If we attempt to solve Cauchy' s problem for

Laplace' s equation by Fourier' s method, then we see that incorrectness

arises on account of the high harmonics. But the high harmonics give ex-

ponential growth of velocity increasing with the number of harmonics.

If we require the solution to be

bounded on moving away somewhat from

the hyperplane, on which the initial

conditions are given, we arrive at the

position where the coefficients fall

in a geometric progression, as the

number of harmonics is increased. This

also guarantees the continuous

dependence on the initial conditions,

(it is, of course, in the class of

those initial conditions, for which

the coefficients decrease so quickly.

Pig. 4. For equation (1.0.E). the theorem
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on the continuous dependence on the initial conditions can be formulated as
follows. Let Q (fig. 4) be the sphere | χ \ < 1, and q the part of its
boundary defined by the inequality

\ Xi < T
2
.

Let the solution u(x) of equation (1.0. E) be determined in Q, with modulus
not exceeding unity. Let

I u I < e,
q

Then there holds the inequality

|u(0)|<E
r C
.

(This was proved by me [22] for a sufficiently large constant C, depending

on the equation; M.M. Lavrent'ev [23] by another different method found

that for this constant one can take 2 + δ, δ > 0, putting e
C i r
 in the

right-hand side of the inequality, where С
г
 depends on the equation.)

By a transformation of coordinates this theorem is extended to a

domain of arbitrary form, and to all its interior points (the estimates

are changed in a corresponding manner).

Another form of continuous dependence is given by the analogue of

Hadamard's three circle theorem for analytic functions.

This theorem is formulated and proved in the next section. Later, (in

§3) we shall obtain from this theorem the previously formulated theorem on

the limiting velocity of decay of the solution in a cylinder (according to

an iterated exponent).

An evident consequence of this theorem is the theorem concerning the

identical vanishing of the solution, which decreases more quickly than any

power on approaching an interior point of the domain, and a fortiori, the

uniqueness theorem about the solution of Cauchy's problem.

It should be noted that the proof of the theorem of the next section is

close, in its ideas, to the proof of the uniqueness of the solution of the

problem of Cauchy-Heinz-Cordes.

§2. Three-sphere theorem
1

We turn to the three circle theorem for analytic functions ([27], p.

469). It is formulated thus:

Let f(z) be a function of a complex variable, defined in the annulus
r
i 4 Ι ζ I ̂  r

2
, analytic in the open ring Γι < | ζ | < r

2
, and continuous

in the closed ring r
A
 ̂  | ζ | 4 r

2
. We put

M(r)=m&x\f{z)\.
\z\=r

Then, for any r (r^ < r < r 2 ) , we have the inequality

A short account of this theorem is given in [ill.
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. Γ , Τ

I n — In —
In Μ (г) < In Μ (/•,) -2- + In Μ (/·,) -1- . (2.1)

ln-ϋ- ' In-?·
г, г,

Let г2 = 1, and Л/(г2) = 1. Then, inequality (2.1) gives us
In r

Л/(/-) = Л / ( / - , ) с 1 " ' 1 . (2.2)

Let Л/(г
±
) = rι . Then, from inequality (2.2), we get

/!/(/·)< /-P. (2.3)

The inequality (2.3) is equivalent to Hadamard's theorem. In fact, in
this form it will be convenient for us to transfer it to the solutions of
elliptic equations.

We prove the following statement.

T H E O R E M 2.1. In the sphere Q
1
 of radius unity, let there be

determined a solution u(x) of equation (1.0.E), which is continuous in the
closed sphere. We denote

Μ (/·) = max \u(x)\ (0 < r -̂  1).
l.vl = r

Let

,1/(1) = 1. (2.4)

Let, for any r,, (0 < г
г
 < 1),

-!/(/·,) = ι·?. (2.5)

Then, for any r (r
x
 < r < 1), we have

M(r)<(Crf\n j , (2.6)

where С is a constant depending on the constant Ct of inequality (1.1) and
on the dimensionality η of the space.

(The presence of the factor In C/r, distinguishing the inequality (2.6)
from inequality (2.3), is connected, possibly, with the method of proof).

Theorem 2.1 can be reformulated in a form closer to the classical
theorem of Hadamard.

T H E O R E M 2.2. In a sphere Q
r 2
 of radius r

2
 -$ 1, let there be deter-

mined a solution u(x) of equation (1.0.E), continuous in the closed sphere,
and M(r) (0 .< г ·$ r

2
) have the same meaning as before.

Then, for any г
г
 and r (0 < r

x
 < r < r

2
) , there holds the inequality

In 1 ii

(2.7)

where С is a constant depending on a of inequality (1.1), and on n.
We first show how from theorem 2.1 we obtain theorem 2.2, and then

proceed to the proof of theorem 2.1.
We suppose that theorem 2.1 is valid, and let u(x) be a solution of
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equation (1.0.E) in the sphere | χ \4 1. We put

The function Uj.(*) is defined in the unit sphere and max |
χ = 1

Further, Uit*) satisfies the equation

= 1.

Σ
 a
i* ('̂

r
* Σ

We see that this equation satisfies the same inequalities as the

initial equation (since r
2
 < 1. and the derivatives of the coefficients of

this equation have moduli less than the derivatives of the corresponding

coefficients of the initial equation).

We put

| щ(х)\,
1
() |

\x\=r

and let M
1
(r

1
/r

2
) = {rjr^, i.e. β = In Д/

1
(г

1
/г

2
)/1п(г

1
/г

2
). Then, from

inequality (2.6), we get

1η Μι(-ϋΛ
V '2 /

in

or

In

whence, in turn,

M (r2) ^ V. Μ (

In —

>!) у
in

In —-

We proceed now to the proof of theorem 2.1.
1°. We use the following result of Cordes (cf. [2l], pp. 246-254).

Let there be defined in the sphere | χ \ 4 1 the self-adjoint operator

η

г V

i,ft=l

the coefficients of which are twice continuously differentiable, and

satisfy the inequalities

\aih\<±, j \ aihUb > α Σ· ll α > 0,
i ftl i l

(2.9)

d4
ih



46 Ε.If. Landis

Then, there exists a transformation of coordinates

(2.10)

having the properties:
1) The transformation (2.10) leaves the origin of coordinates

unchanged, and transforms the sphere | χ \ < 1 into a domain D, containing
the sphere \ у \ 4 Cj.

2) The transformation (2.10) is continuously differentiable and its
Jacobian D(y)/D(x) satisfies the inequality

0<С
2
<-Щ-<С

3
, (2.11)

the derivatives -— and -— satisfy the inequalities

<C
6
 (i,k-=U . (2.12)

3) The transformation (2.10) is twice continuously differentiable,

except, perhaps, at the origin, and the following inequalities hold:

dxh

/Кг,
<>Vh "УI

(2.13)

4) We introduce in the space y, polar coordinates ρ, η (ρ = | у \ and

η is the point (τΑ· ···· ] i / on the unit sphere Ki = ( \y\ = 1i ). Then

the operator L
o
 in these polar coordinates has the form

'*- Σ £
)~Ь· (214)

where
\Pi\<C, (2.15)

and M
o
, for each fixed ρ (0 < ρ <; C

x
), is an elliptic operator on the unit

sphere K
lt
 having the properties:

a) for each pair of functions Ui and ω
2
, defined and twice continuously

differentiable on the sphere K
lt
 we have

\ ω
1
Λ/

ο
ω

2
£ίσ

1
= \ ω

2
Μ

ο
ω!ίίσι; (2.16)

Κι Κι

b) for any function ω, defined and twice continuously differentiable
on the sphere K

u
 we have the inequality

— Ϊ
do ,)

σ
τ
 < 0 (2.17)
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(on (2.16) and (2.17) ctoj, denotes the element of surface of the unit
sphere K

x
).

The constants C
x
 - C

e
 depend on the constant α and on the dimensionality

η of the space. In future, the letter C, supplied with suffices, will denote
constants depending only on α and on n.

2°. We make the substitution (2.10) in equation (1.0.E). We get

η η η

г — V d / ' в 1 \ ι V ^ V d°ift .
•£J dii \ * дхь J J—i V · ^ "xi

i, k=i fc=l t = l

where
_ θ» η — 1 д

and
η η

L V1 f ΚΙ д<Чь ι ζ. ι Λ ^
. ^ ?. Ι — 7, г- Оь -τ- Du ι* ΔΛ \ ZJ dx{ h y h J дх

ft=l t = l " Л = 1

Then, in view of (2.12). (2.15).

\d
k
\<C

9
. (2.19)

Our solution u(y), being defined in the domain D of the space y, is

defined in the sphere |y |< C
1 (
 and satisfies in it, by inequality (2.4),

the inequality

\u{y)\<\. (2.20)

Also, by (2.12), we have | у \ < C
1 0
 | χ \.

We make in addition a similarity transformation of the space y, with
coefficient of similarity equal to 2/C

10
. The new variables are for the sake

of simplicity denoted by the same letters y, but the radius of the sphere
in which they are changed is, as before, denoted by С

х
. Then, if Lj. in the

new variables has the same form as previously,

£ = -7r5-£i + £!, and \y\>2\x\.

Hence, for the sphere \y\< CiOrlt in accordance with (2.5), we have the
inequality

or, putting 2ri = Pi, we get

| B M I U = O I < ( - I T ) P ( 2 · 2 1 )

Prom the inequality (2.21), in view of Bernstein's inequality [28], we get

'fL|| <cni-9lry~l (2.22)

and

"2 (2.23)
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The inequality (2.20) together with Bernstein's inequality gives

χ1

•' ι

\ — \

(iu

and

Σ • c
u
.

(2.24)

(2.25)
w •

3°. We select an arbitrary η (Ο < η < (-Pi) 2 ^). and approximate to

u(y) be a thrice continuously differentiable function v(y), so that

n n
dv du

max + Σ \-
(2.26)

Let /(p) be some fixed thrice continuously differentiable function,

defined on the interval [-Ci, — Cj.] and having the properties:

We shall suppose that r^ < 1/C
1O
, and we fix some number p

0
 < —, such that

2

and put
Qi < Qo <

 c
i>

υ (у) if

{ 0 if -|ρ
ο
<ΐ2/|<ρ

ο
.

Then for the function w(y) we have

\Lw(y)\<Clb4 if

Lw (у) ]<•£*- if ^-

(2.27)

Qo

\w

>' ,
\У\ '= --O-

Σ βι ν-2

м = ̂ -h

< l 4 t ^-η·

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)
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4 ° . We p u t

I У Г

We have

L,w = L, (ο&ζ) = -,,--„- (ρΡζ) -4- -—— '— (ρΡζ) 4 — г Mo ioPz) —

(2.34)

We put

2β + η - 2 = Λ and β (β-ί-η-2) = β. (2.35)

Then

- - 2 Л ρ —- ( ρ —— ) ρ — \- BQZ -^ 4 Q -Έ~ -

or

. (2.36)

Multiplying the left and right-hand sides of inequality (2.36) by

1/p""
1
 and integrating over the domain - p

±
 < | у \ < p

0
, we get

2

'̂  Λ/ Ί

or
Oo

Qo Oo

Κι Qi_ Κχ Oi
2 2"

Oo

4- 2Λ \ do \ -44 Д/ ζ do. (2 37)
Οχ Κ'ι

We consider the last of the integrals on the right-hand side of (2.37).

For an arbitrary point p, - р г < p < p 0, we have
2
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Κι

z da, 7ο Ιζ
 Uo

Αι

Because of (2.16) and (2.17), the first of the integrals on the right is
non-positive, and the second and third are equal. Hence

Qo 00

jj dQ $ - g - Mozda> -i- \ -~ ( j j ζΜ,ζda^j dQ. (2.38)
Οι oi

Τ
Combining (2.38) with (2.37), and noting that, when I у I = Po the

function ζ together with its first and second order partial derivatives

vanishes, we find
Qo

OI . „„
\y\ < Oo

However, by (2.30) and (2.33), and considering the choice of η ,

Further, from (2.33)

Οχ

dz 1 to

(2.39)

(2.40)

and consequently from (2.30) and (2.31)

(2.41)

We still have to evaluate M
p
z. But M

p
z = я iipto, Л/р» is near to

u, and we can evaluate the latter from the equation. We have

г
и . n — -\ ди .

 т
 1

+ L u
\

Whence, with the help of inequalities (2.21), (2.22) and (2.23), we get

Whence, in turn, considering (2.26) and the choice of η , we find

M
o
z\\

 л
 < С

2 0
.

e =
ir

We suppose that

(2.42)

(2.43)
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Then (2.39) together with (2.40), (2.41), (2.42) and (2.35) gives us
the inequality

C° - 2

Oj ?±-<\V\<Qo

We prove the following inequality:

Ου

(2.45)

Рог this we put

Z = ι

Then

which gives us

Qo

f dz Ι φ 2 \ 2 ι ι dq>2

) ρ 1Q dg '

Qo
1 ζ"

Οι Οι
QlnsJ- Ί η -

Οο Co

Я-_С„.
о, о, Q l n 2 -

Substituting (2.45) in (2.44), and transforming from ζ to w, we find
и2 , ,̂ С 2 1

Γ dy < -sf

- ^ < ! !/ i < Oo 4,L < I у К oo

5°. We now estimate
I grad w 1̂
• 2В+П-3

Πι

y<|vl<Qi

For this we remember that by (2.14)

Therefore

and since

4 L ~ У
i, h = 1

i,h= 1

dw

а»4 dyh

(2-46)

(2.47)

then

Further

i, / i=l

j g r a d ш j 2 <

oyh

>a grad

(2.48)
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«ι ,- I .7 I < Oil -у- < I V I < Oo

' Qj Ν 2β4η—3 J 3ρ
_ Οι

which, with (2.48), gives

—— dzj -<c • "\ \

til
i у : < o<i -γ- < I У ! < Oo

α χ ^

ασ

•%- < ι υ ! < во

We have

Then

Τ (2.50)

3 ^
liM = - y Ιν1 = χ

and hence, by inequalities (2.21), (2.22), (2.26) and by the choice of η,

( 2 5 1 )

I f / 1 -= ^

Finally

a)L,w

ρ ρ

t'l ., I!/ ! < Oo

Combining now (2.49) with (2.50), (2.51), (2.52) and (2.21), we get
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I grad ш |» ^ r ft2 Г ю* , ,

~- < I '• I «to

-y-

[ S
ψ < I V I '- to - ^ < I у I -Oo

Together with (2.46) th i s gives

!gradaw|2 , .

6°. We have

^- < Ι ν Ι < oo

Let po sat i s fy the inequality

C4

в о < 9 6 ( С , '

and, turning to (2.46), we can write

S7^f
y<|yl<g» Q -γ-

4 >• г г г XT 7 dw
Li-.w = LJW — LaW == х^ш — / cli — cw

Wo ^ J dVi

We put
« m a x | d{ | = f32.

Then, remembering that \ с {4. 1, we get

~ (LjW)2 < 3 (Lav)2 + 3C.2,1 grad ay I2 + 3w2. (2.54)

From the inequality (2.46) it follows that

ρ2β+η-4 dy<C33Q0 \ ρ2β^»-4 + Γ

3 , β · (2.55)

Τ·<Ι

96(С,
0
С|,+С

м
)· ^

2
·

5 6
)

Then from inequalities (2.53), (2.54) and (2.55) we get

β
3
, (2.57)
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We now recall inequalities (2.28) and (2.29). Estimating the right-

hand side of (2.57) with their aid, we get

(2.59)

ψ < ! υ ι < Qo

7°. Let, now, ρ (Pi < 2 ρ < p
0
) be an arbitrary number. Prom the

inequality (2.59), we find

Qi
I!/1 < 2o

Since Po < -. then

4
(2ρ)"

<6
1

40
 Γ^-Υ

β
 In

2
 i

But from this inequality it follows (cf. [29]) that

i W
I U 1—0

We take now as p
0
 the number

1

(so that inequalities (2.27) and (2.26) are satisfied). Then, for any

) it is true thatΡ (Pi < -»

w
4 1 U In ι

Going from № and p t o u and r, we get

In

for all г (С
4 в
 г

г
 < r < C

4 7
). Prom this it follows that C

4 8
 exists, such

that

for г (гч < г < 1).

Thus, for β > 1, the theorem is proved. It remains to consider the

case β < 1. There exists a constant С+д, such that

grad и <
I я |

Hence

and, since β < 1, then

^ if r
1<r<
\.
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To complete the proof of the theorem, it is only necessary to put

С = max (C
48
, C

8 0
).

§3. On the admissible rate of decay of the solution in a senicy1inder

As an example of the application of the three spheres theorem, we shall
obtain the following theorem.

T H E O R E M 3.1. Let equation (1. 0.E) be defined in the half cylinder
η

U = Σ χ
2
 = г

2
 ·£ 1, «ι > 0. There exists a constant N, depending on r,

i = 2
 l

on the constant ot of inequality (1.1) and on the dimensionality of space,
such that whatever be the solution u(x) of equation (1.0.E), determined in
U, not identically zero, there holds the inequality

limsup _uJ > 0, (3.1)
e
 e

Μ (xj =:

PROOF. It is evidently sufficient to consider the case where
| u(x) | < 1. Let С be the constant of theorem 2.1, corresponding to the
constant α of our equation.

We put

(•4.2)

We denote by Q'
Xi
, Q

Xl
 and Q

Xi
 the spheres with centre at the point

(xi, 0 0), and radii r
0
, 2r

0
 and r respectively. We put

M'[x^)= sup j и {χ) I and М"(з;,) = sup |и(ж)|.

Let, for some x\ > r

Applying the theorem of the three spheres to the sphere Q'
Xl
, we find,

on considering (3. 2)

1., Cr_ P_

Since Qii-ro
 c
 Qxi, then

Hence we find, by induction on k, that

J.

AT fo-*r
o
)< τ·»" (3.4)

provided that х
г
 - (k - l)r

0
 > г and β/З*"

1
 > 1.

Let, now, u be an arbitrary solution of equation (1.0.E), not
identically zero. Then, by the theorem of uniqueness of the solution of
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Cauchy' s problem, M' (r) > 0. Let

M ' ( ' · ) = ' * · . β ο > 1 .
Prom inequality (3.4), we find that, for any *t > г + r

0
, it is true

that

_1 In 3 . 1

j-j
 > β
_

ρ
-,.

ο
 4 - r -,- η о т n i n — ,

whence, it follows that there exist arbitrarily large values of x
l f
 such

that
2 In 3

Λί (ж,) > е - * "
7
· "

 Λ1
'

and since г
0
 depends on r, (X and on n, the dimensionality of space, the

theorem is proved.
This theorem admits the following generalization.
T H E O R E M 3.2. Let equation (1.0.E) be defined in some domain D.

Let I u I < Μ in D, and let u(x) = a 4 0 at some point χ € D. Let у be some
other point of the domain D, and let it be possible to join the point χ
to the point у by a sequence consisting of k spheres of radius r, contained
in D, and such the centre of one sphere of the sequence is situated inside
the sphere that precedes it, the centre of the first sphere coincides with
x, and the centre of the last with y. Then, there exists a point z, such
that

| у - - ζ Ι < /· and | и (ζ) | > ^ ̂  - j

where С is a constant, depending on r, the constant Ot of inequality
(1.0.E), and on the dimensionality of the space.

The proof of this theorem differs little from the proof of the
previous theorem, and we omit it.

§4. The relation between the number of changes of sign of
a solution and its growth

In this section we shall consider the equation

i, / < = l

(cf. p. 22). As in §7, chap. I, we shall mean by a solution of it a
continuous function satisfying the integral identity (7.1) of chapter I.

Let a continuous function u(x) be defined in the spherical layer
Τ = [R! 4 χ 4 R

2
\- We denote by E

+
 the set of points χ e T, where

u(x) > 0, and by E" the set of points χ e T, where u(x) < 0. We shall mean
by a halfwave of amplitude not less than m > 0, any component D of the set
Ε = £

+
 I j E~. having limit points on each of the spheres | χ \ = Ri and

| χ | = fi
2
, such that
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min max | и (χ) | > m. (4.1)
2W=r

LEMMA 4.1. Let the equation (1.0.C) be defined in the sphere
QR = \\x\ ζ R\ of arbitrary radius R. Let u(x) be a solution of it in QR,

such that in the spherical layer TR = ϊ-rR •$ 1*1·$ R I. this solution has N

halfwaves Dlt . . . . Dfj and the amplitude of the i-th halfwave is not less
than mi > 0.

Then, there exist not less than —N halfwaves Di, such that
2

τ
л·™-'

max и (χ) Ι > m,2
 C|
 , (4.2)

where Ci is a constant depending on the constant a in the inequality, and
on the dimensionality η of space.

PROOF. Since the number of halfwaves is equal to JV, and they do not

intersect, there exist among them not less than —N halfwaves

Dj
t
, .... Dj

s
, s >—N, such that

μ Α < - - ^ (ρ = 1.2. ...,s) (4.:i)

(ω
π
 is the volume of the η-dimensional unit sphere). We take some Dj . We

shall, for the sake of definiteness, consider that Dj С Е*. In the
contrary case, we change the sign of u.

Let Μ be the constant of lemma 7.1, chap. I, selected for that value
of a., which enters into the given equation.

We suppose that

N>23li*1M, (4.4)
and l e t

We denote by di the intersection of Dj with the spherical layer

•r ~\" ~2k~ R < I
 x
 I < Ύ + ̂ t ̂ (i = 1, 2, . . ., /ι).

In view of the inequalities (4.3), (4.4) and (4.5), there exist at least

— k different values of i, such that

ω
" \~&к)

μ,Α < V ' · (4.H)

Let these values of i be ii, is ir>
 r
 ^i;^·
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/ л < 0 = m a x и (χ) (1=1,2, ..., /·),
. _ ι

and let this maximum be attained at the point *
(I)
. We denote by Q

( l )
 the

sphere of radius R/4k, with centre at the point x^, and by g^
1
* the

component of the intersection di
t
 Π Q*'\ containing the point χ*

1
*.

Since from (4.6) there follows a fortiori

t h e n , a p p l y i n g lemma 7 . 1 , c h a p . I , we f i n d

sup u(x)>2ma>.

By the maximum principle

г а + 1 > > sup и (χ),

and since m*· ' > my , then

max и (х) > sup

and since by (4.4) and (4.5)

Λ

A 2n+3 I

then

t
3rHJ.V7 —

max и (χ) > /«. 2 " " ' (4.7)

If we now put Ct = 2
 n
"

 x
 Λί""

1
. then, when condition (4.4) is satisfied,

in view of (4.6), we shall have

i_

-1
max и(ж)> m. 2

 Cl
 > m- 2

 Cl

if, however, (4.4) is not satisfied, then inequality (4.2) is satisfied
trivially, and the lemma is proved.

T H E O R E M 4.1. Let equation (1.0.C) be defined in all space. Let
u(x) be a solution of this equation, also defined in all space. Let Ε be
the set of points χ of space, where u(x) > 0, and E~ be the set of points
χ of space, where u(x) < 0. Let N be the total number of components of
the sets E* and E~. Then
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lim inf ~-^- > 0,
7—>co

where M(r) = max | u(x) | and С is a constant depending on <X of
χ = г

inequality (1.1), and on the dimensionality of the space.
PROOF. We note firstly that, by the maximum principle, every com-

ponent of the set £ + or E" is an unbounded set. Let Ro be so large, that
the sphere QR 0, of radius Ro with centre at the origin of coordinates,
intersects all N components of the sets £ + and E~.

Let g1( ..., giv be these components of the sets E* and E~, and let

m = min( sup |м(ж)|).

Then, by the maximum principle,

max jw(a;)|>m. (4.8)
x
tgi

\х\=т>В
0

Let Cj. be the constant of lemma 4.1, corresponding to α of inequality
(1.1) for the given equation.

Let r-fe = R
0
2

k
 (k > 1). We fix some k, and consider the spherical

layers

Рог each i = 1, 2 N; j = 1, 2, .... fe, we put

(шах | u (ж) |) »
l

i i f t + 1
= max |и

«es-i
 a n a

 «ê i

By inequality (4.8)

Further, by lemma 4.1, and by the maximum principle for any

j (j = 1, .... k) there exist not less t

i'-ij,i ij,
s
, s >-Ν, such that

j (j = 1, .... k) there exist not less than —N values of i:
2

i( r
 m

ijt
 ^ - 2 ^ (r = 1, 2, . . ., 6·). (4.10)

Whence, in turn, it follows that there exists i
0
, and not less than

k/2 values of j : j\ j
q
, q >—k, such that

ι

m W p + 1 > m W p · 2 C l (p = 1, 2, . . . , q).

Whence
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which, remembering (4.5), gives

ι

M{r
k
)>m-2

and, for sufficiently large k.

~9~ \~r
2
 *

 C l

Whence, by the maximum principle, for sufficiently large k

•ГЦ} _,
M{r) > mr 4c'i

and, to complete the proof, i t only remains to put С = 4Ci.
COROLLARY. If the solution u(x) of equation (1.0.C) is defined in

all space, and the sets E* and E~ have infinitely many components, then
M(r) = max I u(x) \ grows, as r -co, faster than any power.

|*|=r

Instead of equation (1.0.C), it would have been possible to consider

equation (1.0.B) (p. 14). Here, instead of lemma 7.1 chap I, we should use

lemma 3.2, chap. II.

Received by the editors 6th. July 1962.
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