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Some geometrical properties such as convexity and star-shapedness of level sets 
of positive solutions to elliptic or parabolic equations have been studied via various 
authors (see an excellent lecture set of notes by B. Kawohl, [ 81 and the references 
therein). One reason to choose star-shapedness and convexity, other than other 
properties, as geometrical properties, is that they can be easily described and are 
accessible to variational and maximum principles in analysis. Here we are interested 
in some general questions regarding level sets of solutions to elliptic and parabolic 
equations, such as the size (i.e., HausdorB measure of appropriate dimension) and 
the topology of these level sets and estimates on critical point sets, etc. The study 
of such problems was motivated by the study of moving defects in evolution prob- 
lems of harmonic maps and liquid crystals (see [lo]). In [lo], I have studied a 
model for the evolution of nematic liquid crystals. The singular set of optical axes 
(i.e., defects) of liquid crystal in motion can be described precisely by the nodal 
set of solutions to certain parabolic equations. 

Recently, there were several rather interesting articles studying the nodal sets 
of eigenfunctions of Laplacians on a compact Riemannian manifold by Donnelly 
and Feffermann [ 2 1, [ 3 ] or, generally, solutions of second-order elliptic equations 
in Hardt and Simon [ 61. 

The present work can also be viewed as a natural extension of [2], [3], and 
[ 61. Our main result can be stated as: 

THEOREM 4.2. Suppose (M", g )  is an analytic compact Riemannian mangold 
connected without boundary. Let u be a nonzero solution of 

a 
at 
- u =  AMu in M X ( 0 ,  0 0 ) .  

Then 

{ x E M : u ( x ,  t )  = 0 } 5 C( n ,  g ,  M ) N (  t ) .  Hfl- I 

Here N (  t )  is defined by (4.7). 

satisfies AM@ + A6 = 0 on M ,  then (0.1 ) implies that 
The estimate (0.1 ) is optimal. In fact, if u = e-"6(x) where 4(x) ,  for x E M 

(0.2) H n - ' ( x E M : 6 ( x ) = O )  5 C ( n , g , M ) 6 .  
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This is the optimal upper bound for the nodal set of an eigenfunction qJ of AM on 
M ,  which was first shown by Donnelly and Feffermann in [ 21. 

The proof of Theorem 4.2 is different from that of [ 21. It is done first by an 
interesting reduction of heat equation to an elliptic equation (see also [9]) and 
then by a quantitative version of Cauchy's uniqueness theorem Lemma 4.3, and 
finally by reducing it to show the following: 

THEOREM 3.1 I .  Let g be an analytic metric on B1 , and let u be a nonzero 
solution of A,u = 0 in BI . Then 

(0.3 1 H " - ' { x E  B1,*: u(x )  = 0} S C ( n , g ) N ,  

whereN = JB, l vgul* /JaB,  b I 2 .  
The quantity N in (0.3 ) (and also N( t )  in (0.1 )) is called the frequency of u on 

B1 . Previously, N. Garofalo and the author have used this quantity to give a quan- 
titative version of unique continuation theorems (see 151). This is a simple re- 
placement for the quantitative Carleman-type inequality as shown by Donnelly 
and Fefferman in [ 21. 

Inequality (0.3) is proven by an integral geometry estimate and the following 
fact about analytic functions in the unit disc of the complex plane. 

LEMMA 3.2. Let f ( z )  be a nonzero analytic function in BI  = { z E C : Iz I  I 
1 } . Then 

(0.4 1 Card{zEB1,2:f(z)=O} S c o N ,  

The paper is written as follows. In Section 1 we discuss the relationship between 
the vanishing order of a solution of a second-order elliptic equation and values of 
the corresponding frequency function. As a consequence we also show that the 
vanishing order of A,,,& + AqJ = 0 in Mcannot be larger than C( n ,  g, M )  6, when 
(M", g )  is C I * '  (see [ 2 I) .  In Section 2 we shall estimate the Hausdorff dimension 
of nodal sets and singular sets, i.e., the set of points where both u and I V u  1 vanish. 
The method we use is from geometric measure theory and is quite general. In 
Section 3 we prove Theorem 3.1 I, to show how the frequency controls the size of 
nodal sets. Finally, in Section 4, we shall prove our main result, Theorem 4.2. 
Many results we have described above may also be generalized to nonanalytic cases; 
we refer to various remarks in our paper. 

1. Vanishing Order and Frequency 

Let u be a nonzero harmonic function defined in the unit ball B1 (0) of R". For 
a E B 1 ( 0 ) a n d O < r I  1 - la1,wedefine 
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and 

HereB,(a) = { x E  54" : Ix - a1 < r } .  N ( a ,  r )  is called the frequency of u on the 
ball B,( a ) .  The following fact was first observed by F. J. Almgren. 

THEOREM 1.1. N (  a ,  r )  is a monotone nondecreasing function of r E (0, 1 - 

Since, by integration byparts, ( d / d r ) H ( a ,  r )  = ( n  - l ) / r H ( a ,  r )  + 2 D ( a ,  
Ia l ) , f o ranyaEBt (O) .  

r ) ,  that is 

(1.3) 
d 2 N ( a ,  r )  - log H ( a ,  r )  = 
dr r 

Here Ef(a ,  r )  = H ( a ,  r ) / r " - ' .  We thus obtain 

H ( a ,  2R) = H ( a ,  R)exp 5 4N(a3t-lul)fl(a, R), 
(1.4) 

for all 0 < R < $(  1 - ! a t ) .  

The latter inequality is due to the monotonicity of N( a ,  r ) .  

version of the unique continuation theorem. 
A consequence of the doubling condition (1.4) is the following quantitative 

PROPOSITION 1.2. The vanishing order of u at any point inside the ball 
B1,4(0) never exceeds C(n)N(O, 1 ) .  

Proof: By (1.3), (1.4) one has 

and 1 < X 5 2. This implies, in particular, the vanishing order of u at the origin 0 
is not larger than N( 0, 1 ). 

Next we integrate ( 1.5) with respect to R to obtain 
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where f B p u 2  dx = ( 1  / p " )  sBp u2 dx. Hence, for a E BIl4(0),  one has 

u2 dx I f u2dx.  f B314f a)  B d a )  
(1.7) 

Then it is easy to see that 

and, by ( 1.3) and the monotonicity of N( a,  r ) ,  that 

Thus the vanishing order of u at a E B1/4(O) is not greater than CN(0, 

Finally one notices that if N(0 ,  1 ) S t ( n )  4 1, and if sdB, u2 da = 1 (which 
may always be assumed by a suitable normalization ), then u( a )  # 0 for all a E 
B1/4(O). This is because 

1 )  + C ( n ) .  

(1.10) 

are valid under these hypotheses. 
This completes the proof of the proposition. 

Theorem 1.1 and Proposition 1.2 are in fact valid for solutions of more general 
second-order elliptic equations. To be more precise, let us consider 

n n 
(1.11) Lu = 2 (a"(x)u,,>, + c b'(X)UXj + c(x)u = 0 

i,j= 1 i =  1 

in B l ( 0 )  C R" with u f 0, and coefficients verify the following assumptions: 

(i) ai i (x)&& 2 X ( [ I 2 ,  'v't E R", x E  B I ( 0 )  and X > 0; 

(iii) c I a iJ (x )  - a"(y) I 5 K2 I x - yI , x ,  y € B,(O);  
L J  

for some positive constants K 1  , K2.  
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THEOREM 1.3. (see [5]). Therearepositiveconstants ro = ro(n ,  A, K , ) ,  A = 
A( n ,  A, K I  , K2) such that the function N (  r)exp( Ar) is monotone nondecreasing on 
(0, T o ) .  

Here,& a E B1,2(0), H ( r )  = Jas,(u) w2 do, 

Moreover, C , ( n ,  A, K , )  5 p ( x )  5 C2(n ,  A, K , )  for x f B,(O). (See [ 5 ]  for the 
details.) We also note that if C(x) S 0 and a = 0, then ro may be taken to be 1. 
From the proof of Proposition 1.2, one also easily deduces the following: 

Let u and L be as above. Suppose that H( 2 R )  5 4NH( R )  
for some R 5 r0 /2  and N 2 1. Then the vanishing order of u at any point of BR is 
never exceeded by C( n ,  A, K I  , K 2 ) N .  

COROLLARY 1.4. 

To end the discussion in this section, we would like to remark that the vanishing 
order of an eigenfunction can be estimated in terms of the eigenvalue. To see this, 
we let (M", g )  be a C2-connected Riemannian manifold and let u be an eigenfunction 
of Ag in M with eigenvalue A. That is Agu + Xu = 0 in M .  (In case dM # 4 and is 
of class C2, we will assume that u = 0 on dM). Consider the Riemannian manifold 
A? which is the cone over M with metric 2 such that d f 2  = dr2 + r2 d g 2 ( x )  for ( r ,  
x )  E (0, co) X M .  It is clear that 2 is a Lipschitz metric. Let h ( r ,  x )  = r%(x )  with 
a = [d4X + ( n  - - ( n  - 1)]/2, then Agh = 0 inM. Forthe harmonic function 
h on we have the corresponding frequency function N (  a ,  r ) .  It is easy to check 
that N(O,2)  I c ( n ) f i .  

By the arguments in the proof of Proposition 1.2, and by the C2-property of 
the metric g in M ,  one then easily gets the vanishing order of u at any point of M 
is less than C f i ,  where C is a positive constant which depends only on g (see 
also 121). 

Finally if dM is C2-submanifold, then one may apply the argument in the proof 
of Theorem 2.3 below to obtain the same conclusion. 

2. The Hausdorff Dimensions of Nodal and Singular Sets 

The HausdorfF dimension of nodal sets of solutions of semilinear second-order 
elliptic equations was studied earlier by Caffarelli and Friedman (see [ 11). Arguments 
of [ 11 were generalized to a more general class of second-order elliptic equations 
by Hardt and Simon (see [ 6 ] ) . 

Here we want to show: 

THEOREM 2.1. Let u be a nonconstant solution of ( 1.1 1 ) . Then the nodal set 
{ x E B, : u ( x )  = 0 }  is of Hausdorfldimension less than or equal to ( n  - 1 ), and 
the singular set { x f B, : u ( x )  = I V u ( x )  I = 0 is of Hausdorf dimension not 
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exceeding(n - 2). If, in addition, c ( x )  = 0, then theset { x €  B1 : (Vu(x ) l  = 0 )  
is also of Hausdorfldimension not greater than ( n  - 2). 

Remark. A nonconstant solution u of ( 1.1 1 ) may have I V u ( x )  I vanishes on 
an open subset of B I  if c ( x )  + 0. 

The proof of Theorem 2.1 is based on Federer's dimension reduction argument 
[ 131 and the bound on frequency functions. Since very little knowledge of u being 
a solution of equations of the form ( 1. I I ) is used, the present proof also has an 
interesting application in studying the line defects of liquid crystals (see [ 101 for 
details). Since, by an argument of [9], a suitable version of the Carleman type 
inequality will lead to bounds for frequency functions, the conclusions of Theorem 
2. I will remain valid also for the case that 

a ' J ( x )  E Cm(B,), i, j = I ,  * .  . , n;  

(2.1) b J ( x ) E L P ( B l ) ,  j =  1, . . .  , n  and p =  q ( 3 n - 2 ) ;  

c ( x )  E L " / 2 ( B l ) ,  (see [ 6 ]  and [12]). 

To prove Theorem 2.1, we let L be the set of all second-order elliptic linear 
partial differential operators L of the form ( 1.1 1 ), 

with coefficients satisfying (i), (ii), and (iii). 
Let Yo -= { E C BI : E is the nodal set of some nonzero HI-solution of Lu = 0 

for some L E L } . It is clear that for E E Yo, E is a relatively closed subset of B 1 .  
We say Ei - E for a sequence of { E, 1 C 30 and E E Yo if 

for each E > 0 there is a i( E )  such that 

BI  - ~ f-l Ei C { x E B1 : dist { E ,  x } < c } 
( * )  

V i  2 i( E )  . 

Now we want to verify the following two basic properties of Yo. 
(PI ) (Closure under appropriate scaling and translation). If I y I I 1 - A, 0 < 

X < I ,  and if E E 30, then EY,, E 30. Here EY,, = A-' ( E  - y )  . 
This is because of the fact that if Lu = 0 in B,  for some L E &, and u is not 

identically zero in B1 , then uy,,(x) = u ( y  + Ax), x E B1 is not a zero H-function, 
for 1 y 1 I 1 - A, 0 < A < 1, by [ 41. Moreover, up,, is a solution of L,,u,,, = 0 in 
B, ,  where L,,x (defined in the obvious way) E L. It is then easy to see EY,, = 
( X  E BI : U,,,(X) = 0 ) ,  thus EJ,,A E 3 0 .  



ELLIPTIC AND PARABOLIC EQUATIONS 293 

( P 2 )  (Existence of homogeneous degree zero “tangent set”). If 1 yl < 1, if 
{hk}  $ 0, and if E E yo, then there is a subsequence { h k ’ }  and F E yo such that 
Ey,Ak, - F and F0,A = F for each 0 < h < 1 .  

It is in our proof of this property that we need the bound on the frequency 
function (see Theorem 1.3 ). To show ( P2), we let u E H’( B1 ) be a nonzero solution 
of Lu = 0 in B1 for some L ,  and such that E = { x E B1 : u ( x )  = 01. For 1 y (  < 
1 ,  and X = 1 - I yI > 0, we let u , , ~ ( x )  = u ( y  + Ax) for x E B 1 .  Hence Ly,A~y,A = 
0 in B I  for a suitable Ly,A E L which is obtained from L by a translation and a 
dilation in coefficients, and u ~ , ~  # 0. 

Without loss of generality, we may assume h k  d h, (since h k  4 0) and U , ~ ( O )  = 
0. For otherwise, it is clear by the continuity of u ~ , ~  at 0 that = 0 (the empty 
set) for all sufficiently small Xk. Then we simply take F to be the empty set and 
( P 2 )  is obviously valid. 

Since is not zero, we have, from Theorem 1.3, that 

(2.2) N ( 0 ,  r )  d e”‘ON(0, ro) < co, VO < r 5 ro. 

Here N is the corresponding frequency function for u ~ , ~ .  
It should be pointed out that the right-hand side of (2.2) is certainly dependent 

on u and y E B 1 ,  I y I < 1. But the bound is uniform in r E (0, ro) whenever u and 
y are fixed. 

Now for each Ak such that h k  5 roX, we define vk(x) = U ~ , ~ , ( X ) / ~ , ~  I u,,A, I ’. 
Let Lk = L,,~,,,  then LkVk = o in B ~ .  It is easy to check that Lk + L, = i t j =  I (a/ 
d ~ ’ ) [ u ’ ~ ( y ) ( d / d x j )  . ]  as k + co (in the sense that the corresponding coefficients 
converge uniformly in Bl ). Since (2.2), we have 

and, by a doubling condition similar to ( 1.4), 

1vkI2 2 c ( n ,  h, K ] ,  K2)  > 0 Vklarge. 
w12 

H f Ca 

(2.4) s 
By taking a subsequence k‘s we may assume that vk’ + V and v;  + v in B2. 

It is obvious then Lyn = 0 in B 2 .  Moreover 

lul2 5 c ( n ,  A, K1, K2) > 0, S lv;12 = 
w12 

lim J 
k f  aBII t  
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Let F = { x E BI : u ( x )  = 0} E 3. We want to check Ey,Ak, - F and Fo,A = F for 
each X E (0, 1 ) .  

Since Ey,A; = { x E B I  : vk$(x) = 0 }  and since ukt(x) -P u(x) in Bz with v # 0, it 
is then clear that Ey,A; - F = { x E B I  : v ( x )  = 0 } . Next one observes, from (2.2) 
and the monotonicity of e"'N(0, r ) ,  that the frequency function Nk(0, 1 ) corre- 
sponding to v k  satisfies 

C" 

N(0 ,O)  = lim e"'N(0, 1) 5 eAkrAN(O, Xkr) 
r4 0 

(2.6) 

= eAkrANk(O, r )  5 eZAkAN(O, 2Xk) 

for all r E (0, 2). Hence the frequency function No(O, r )  for v satisfies 

(2.7) No(O, r )  = N(0,O) Vr E (0, 2). 

It is then clear that ~ ( X X )  = X N ( o * o ) u ( ~ ) ,  0 < X S 1 a homogeneous function of 
degree N (  0,O). Hence Fo,A = F for 0 < X 5 1. This completes the proof of ( P z ) .  

By [ 13, Appendix A ]  we have the following: 

LEMMA 2.2. Let 3 be a collection of relatively closed proper subsets of BI = 
{ x E R " :  1x1 < l }  whichsat is f ies(Pl)and(Pz) .  Then 

(**I dim(BI fl E )  I n - 1 V E  E 3. 

(Here "dim" is Hausdorff dimension, so that ( * * )  means H"- '+&(E)  = 0 for all 

In fact either E fl B I  (0) = 0 for every E E 3 or else there is an integer d E 
6 > 0.) 

[0, n - 11 such that 

dim(E f l  B , )  5 d V E  E Y 

and such that there is some F E 3 which is a d-dimensional subspace of [w" with 
Fy,A = F ,  for all y E  F ,  0 < X 5 1. 

If d = 0, then E fl B, is finite for each E E 3 and each p < 1. 

Remark. Ifwedefine 3, = { E C  B I  : E = { x E  B1 : u ( x )  = IVu(x)l = 0 )  
where u is a nonzero solution of Lu = 0 in B1 for some L E L } , then it follows 
from the above arguments that 3, satisfies ( P I )  and ( P 2 ) .  In particular we may 
apply Lemma 2.2 to 3,. 

Proof of Theorem 2.1 : If u is a nonzero solution of ( 1.1 1 ), then the nodal set 
E = {x  E B1 : u(x )  = O }  E 3,, which verifies the hypothesis of Lemma 2.2. 
Therefore dim E 5 n - 1. Next we let S = { x €  B I  : u ( x )  = IVu(x)l = 0 }  E 3,. 
We apply Lemma 2.2 to 3, to conclude that dim S S d. We only need to check 
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that d # n - 1. Since there is an F E 9irs which is a d-dimensional subspace of R", 
i.e., there is a nonzero u E HI( B, ) and some L E L such that Lu = 0 in B1 and 
that F = { x E B I  : u ( x )  = I V u ( x )  I = 0 } , we have, by the uniqueness of Cauchy's 
problem for equation ( 1.1 1 ), d f n - 1. We note also that if n = 2, then S consists 
of isolated points. 

Finally we let u be a nonconstant solution of ( 1.1 1 ) with c ( x )  = 0, and let 
F = { x E B I  : I V u ( x )  I = 0 } . Denote by 3 the collection of all such sets F. Since, 
by [ 51, I V u  I is an A,-weight for some p > 1, one can verify easily that 3 satisfies 
(PI) and (P2)  as a doubling condition similar to ( 1.4) holds for I V u  1. Applying 
Lemma 2.2, we conclude that there is an integer d E [0, n - 11 such that dim F 5 
d for all F E 9 and that there is a d-dimensional subspace L E 9. We apply again 
the uniqueness of Cauchy's problem for equation ( 1.1 1 ) to obtain d # n - 1. 

We would like to conclude this section with the following: 

THEOREM 2.3. Let u be a nonzero HI-solution of ( 1.1 1 ) in a C',' domain Q .  
Let C dQ be a C ' , ' ,  ( n  - 1 )-dimensional submanifold of a0 such that u = 0 on 
r . Then the set { x E r : I V u ( x )  I = 0 } is of Hausdorf dimension not exceeding 
n - 2. 

Remark. With a little more work, one can show that the above theorem 
remains valid provided that 80, I' are C'," for some (Y > 0. It is, however, an 
open problem when r and a0 are only Lipschitz. In this case one does not even 
know if the set { x E r : IVu(x) I = 0 }  is of HausdorfF ( n  - 1)-dimensional 
measure zero. 

Proof of Theorem 2.3: By a suitable changing of independent variables, one 
may reduce to the following situation: u # 0 is a solution of 

UI,..=~ = 0 and u E H'(B+)  where B, = { x  E B1 : x, L 0 } ,  

and the coefficients of L verify conditions ( i ) ,  (ii), and (iii) in ( 1.1 1 ). 
Following the arguments of [ 5 3 ,  we let 

W2,  
x l = r )  nB+ 
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(See also Section 1 of the paper.) Then one also verifies that 

(2.10) e*'N( r )  is an increasing function of r E (0, ro) 

for some positive A = A( n ,  A, KI , K2, an). 
Now, as in the proof of Theorem 2.1, we consider the set 

B0 = { E C B+ : E = { x E B+ : U(X) = O = I vU(X) I } 

for some nonzero H'-solution of (2.8) with L E L } 

One then verifies that ( P I  ) and ( P2) are valid for 30. Hence, by Lemma 2 and 
by the uniqueness of Cauchy's problem for equations (2.8) with L E L, we have 

dim(E) I d I n - 2 for each E E Yo. 

The conclusion of Theorem 2.3 follows. 

3. Controlling the Size of Nodal Sets by the Frequency 

Let P(x) be a degree N polynomial, x E R". Suppose dim{ x E R" : P(x) = 
0} =k.ThenitisaclassicalfactthatHk{x€BI:P(x)=O} IC(n )Nn-k .F rom 
the discussions in Sections 1 and 2 above, it is natural to make the following con- 
jectures: 

Conjecture 1. Hn- I { x €  B 1 , 2 :  u(x) = 0} I c ( n ,  A, K, ,  & ) N .  

Conjecture 2. H " - 2 { ~  E B1,2  : u(x) = IVu(x)I = 0} S c ( n ,  A, KI,  K 2 ) N 2 .  
Here u is a nonzero solution of ( 1.1 1 ) such that 

(3.1 1 N ( a ,  Yo) 5 N for all a E B,-r , , (0) ;  

(ro = ro(n, A, K l )  is given in Theorem 1.3). 

It was shown by Hardt and Simon in [6] that 

(3.2a) H " - l { x E  B l 1 2 :  u(x) = 0} I cexp(cf i1ogN).  

Here u is a solution of ( 1.1 1 ), and satisfies (3.1 ), where c is a positive constant 
which depends only on n,  A, K, , and K2. On the other hand, Donnelly and Fefferman 
show that 
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for eigenfunctions Agu + Xu = 0 on an analytic manifold (M", 8). Here we will 
show that Conjecture 1 is true for solutions of ( 1.1 I ) provided that all the coefficients 
are real analytic in B1 . More precisely we have the following: 

THEOREM 3.1. Let u be a nonzero solution of ( 1.1 1 ). Suppose all the coeficients 
of ( 1.1 1 ) are real analytic in B1 , and that (3.1 ) is valid. Then there is a positive 
constant C which depends on A,  n ,  KI  , K2 and the analyticity of the coeficients such 
that 

Remark (a) .  Let u be a solution of the uniformly elliptic equation 

(3.4) a"(x)ui, + b' (x)uj  + c ( x ) u  = 0 in B;  c R" 

with all coefficients bounded measurable in B;.  For (x, x " + ~ )  E B ' f + '  C IW"+l ,  

we define V ( x ,  x,+ I) = ( 2  - xn+ I ) u ( x ) .  Then 

a " I J  V,, + 6'Vl = 0 in B;+ I where 

b'( s) for l 5 i S n  

-(2 - X,+~)C(X) for i = n + 1. 

a") 0 
(a " " )  = ( (  1 ) ,  6'(x) = 

(3.5) 

Obviously equation (3.6) is also uniformly elliptic. One also notices that W (  x, 
xn+ I ,  x,,+~) = 0 for (x, xn+ x , + ~ )  E if and only if u ( x )  = 0 for x E BY. 

Remark (b). Let u be a solution of the uniformly elliptic equation 

(3.7) a'J(x)u+ = 0 in B'f 

with a''€ C2(B?).  Then 
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Therefore 

where U(x, xn+ I )  = u ( x ) ,  and 

with bJ  = -(a/ax’)(aij(x)) and M a  suitable large number. It is clear that (3 .8)  
is uniformly elliptic. Because the doubling condition similar to ( 1.4) is equivalent 
to the bound on frequency functions, and because of the above remarks, we conclude 
that to prove Theorem 3.1 is equivalent to showing the following: 

THEOREM 3.1 I. Let g be an analytic metric on B1 , and let u be a nonzero 
solution of A,u = 0 in BI . Then 

(3.9) Hn- 1 { x E  B1/2 : u ( x )  = 0) 5 C(n ,  g ) N  

Theorem 3.1 ’ is proven by induction on n and an integral geometry estimate. 
We start with the following: 

LEMMA 3.2. Let f ( z )  be a nonzero analytic function in B1 = { z E C : I z I 5 
I} .  Then 

(3.10) Card{z E BI, ,  : f ( z )  = 0) 5 coN, 

Proof. Let f ( z )  = C,Eo aJzJ ,  for IzI < 1. We normalize f so that 

(3.11) 

Fix 6 > 0 which will be chosen later, and let z1 , . - * , z, be zeros of f i n  
B d ( 0 ) =  { z E C :  Iz I  I 6 ) . D e n o t e b y p ( ~ ) = ~ ~ = ~ ( ~ - z , ) a n d g ( z ) =  f ( z ) /  
p ( z )  = C,Eo bjzJ.  Then 

m r 
(3.12) 
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Since a. = (-1)'" I"IY=, zjb0, 

m m 
al = (-1lm( fl z,. bl - C fl zi- bo 

;= 1 i =  1 ;#i 

we see that 

Therefore 

On the other hand, 

Hence 

(3.16) 

Now if 6 5 Q, then (3.14) and (3.16) imply that m 5 max { cI ,  c2N}.  It is also clear 
if N 5 to, thenf(z) # 0 for z E B 1 / 2 ( 0 ) .  We thus have m I CON. 

Remark (c )  . 
3.2 to show that if 

Via the discussions in Section 1 ,  we can easily generalize Lemma 
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(3.17) 

then 

(3.18) 

and 

Card{ z € B3/4 :f(z) = 0}  d c , N ,  

Card{zEB, : f (z )=O)  S C ( p ) N ,  for p E ( 0 ,  1) .  

Remark (d). By [ 121 we see that a solution u of A,u = 0 in BI is analytic in 
B, if g is an analytic metric. Moreover, there is a po = po( n ,  g) > 0 such that u ( x )  
extends to an analytic function u( z) on 

D = { z E 43" : z = x + iy, x E B3/4, y E ( - P O ,  P O ) }  

These remarks will be needed in the proof of Theorem 3.1 ' 

Proof of Theorem 3.1 ': We may assume that sdB, u2 = 1. From the discussions 
in Section 1, we obtain 

for a E B3/4(0) and 0 < p < 8 ,  and also that 

In particular, there is a point xu f Bl l lo (a )  such that Iu(x,)l 2 2-". 
j - 

now we choose^^, - - - , a , E d B 1 1 4 ( 0 ) r a , =  (O,O...$O--.O),andlet xu,€ 
B,,16(uj)besuchthat Iu(xs) I  L 2 - c N , j =  1, , n .  

For each j and w E §"-'I we considerA(w, t )  = u(x,, + tw) for t E (-5/8, 
5 / 8 ) .  ItisobviousthatjJw, t)isananalyticfunctionoftE(-5/8,5/8). Moreover 
A( w ,  t )  extends to an analytic function A( w, z )  for z = t + iy, 1 t I < 5 / 8 and 

I y 1 < po. (See Remark (b) above.) Since I&( w, 0) 1 2 2-" and 

IA(w, t + iy)I I C(n ,  g) by Remark (d). 
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Applying Lemma 3.2 toJ(w, .) we see, via Remark (c), that 

Card{ t : u(xaj + to) = 0 and 
(3.20b) 

Xa, + to E B1/16(0)} N , ( W )  5 C ( n ,  g ) N .  

From an integral geometry estimate (see [4, Chapter 3]), we have 

(3.21) H " - l { x E  B 1 / 1 6 ( 0 )  : u(x )  = 0} 5 c ( n )  5 N,(o) do 5 C ( n ,  g ) N .  sn- I 
j =  1 

Now (3.9) follows simply by a suitable finite covering of B I f 2 ( 0 )  by balls of 
radius 1 / 16. This completes the proof of Theorem 3.1 '. 

Remark (e).  By using the same proof as for Theorem 3.1 ', one can show that 
if 

(3.22) f ( x )  = 2 axxX for X E  B;(O), 
A 

and i fN= Ex laA121XI/C Iux l2<  c o , t h e n H " - 1 { x E B 1 / 2 : f ( ~ ) = 0 }  S C ( n ) N .  

It was shown by R. Thom and J. Milnor (see [ 1 11) that iff( x) is a polynomial 
of degree less than or equal to N for x E R", then the 

Total Betti number of { f( x) = 0 } 5 C( n)N". 

It is, therefore, natural to conjecture that if an analytic function is given by (3.22), 
then the 

Total Betti number of { x  E Bl12 :f( x )  = 0 }  5 C(n)N" 

We also conjecture that if u is as in Theorem 3.1 ', then the 

Total Betti number of { x  E B1/2 : u(x)  = 0 }  6 C(n,  g)N" 

Remark ( f ). A generalization of Theorem 3.1 ' to the case that u is defined 
on an analytic bounded domain 52 with analytic boundary d52 is possible as in [ 31. 
Also, the estimate (3.2) is a consequence of Theorem 3.1 and the discussions at 
the end of Section 1. 

4. Nodal Sets of Heat Equations 
In this section we will derive estimates on the size of nodal sets of solutions to 

a class of parabolic equations with time independent coefficients. 
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To start with we consider the following 

(4.1) 

a 
at 
- u = A g u  in M X ( 0 , c o )  

where (M", g )  is an n-dimensional connected smooth Riemannian manifold without 
boundary. 

Let { b j }  be eigenfunctions of A, on M with corresponding eigenvalues { X j }  
such that 0 = Xo < XI 5 X2 5 * * 1 and such that { 4 j }  form an orthonormal basis 
o f L 2 ( M ,  R). Thus we may write %(x) (which we will assume to be in L 2 ( M ,  W) 
in its Fourier series: 

It is then easy to see, for each t > 0, that the solution u of (4.1 ) can be written as 

(4.3) 
W 

u(x ,  t )  = 2 cje-Aj"4j(x). 
j = O  

We define, for y E R I ,  a new function 

W 

(4.4) U ( x ,  t ,  y )  = 2 cje-AJ'4j(x)cosh( G y ) .  
j = O  

(It is clear that the series in (4.4) converges uniformly for I y I I 10 and each fixed 
t > 0.) 

As in [9] we see that 

(4.5) A,U+U,=O in M X ( - 1 0 ,  10) 

and 

U ( x ,  t ,  0) = u(x ,  t )  

(4.6) for (x, t )  E M X  (0, a). 

U J X ,  t ,  0) = 0 
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THEOREM 4.1. If( M", g )  is an analytic manifold with real analytic metric g ,  
then 

(4.8) H"{ (x, y )  E M X (-1, 1 )  : U ( x ,  t ,  y )  = 0 } 5 c(n ,  g ,  M ) N ( t ) .  

Remark. If (M", g )  is only a3 I , ' ,  then the right-hand side of (4.8) should be 
replaced by CN(t)Cm, where c = c ( n ,  g, M). This follows from the arguments 
below and estimates by Hardt and Simon in [ 6 3 .  

Proof of Theorem 4.1 : By a suitable scaling in metric g, we may assume that 
the injectivity radius of (M, g) is not less than two and the diam( M) = D .  We also 
normalize U s 0  that J M x ( - l , l )  U2(x,  t ,  y )  dx dy = 1. Hence, for some xo E M ,  one 
has 

U 2  dx dy B c(g, M )  > 0, s Bl(X0)X ( - 1 . 1  ) 
(4.9) 

and 

(4.10) 

By the arguments in Section 1,  we conclude that 

(4.11) 

for all x E Bsl3(x0) ,  p E (0, a )  and for some positive constant c which depends 
only on g i n  B2(xo) .  

Recall that M is connected. If x E M is arbitrary, we may join xo to x by an 
overlapping chain of balls, with radius 1 /4, whose centers are separated by a distance 
at most 1/8. Using (4.9), (4.10), (4.1 1 )  inductively, we see that, for anyx* EM, 
P E ( 0 ,  11, 

and 

(4.13) 
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Here C is a constant depending on D, the ellipticity bound of Ag and the Lipschitz 
continuity of g on any BI  ( x ) ,  x E M .  

Finally Theorem 4.1 follows from (4.12), (4.10), and Theorem 3.1'. 

The main result of this section is the following: 

THEOREM 4.2. Suppose (M", g )  is an analytic compact Riemannian manifold 
connected without boundary. Let u be a nonzero solution of (4.1 ). Then 

(4.14) H V -  I { x E M :  u ( x ,  t )  = 0 }  5 C ( n , g , M ) N ( t ) .  

To prove Theorem 4.2, we need a quantitative Cauchy uniqueness theorem. 
This can be stated as: 

LEMMA 4.3. Let u be a solution of ( 1.1 1 ) in B: with )I u ( I L ~ ( B + )  5 1. Suppose 
that I I u I I ~ ~ ( ~ ) +  I l ( d u / d ~ , ) l l ~ z ( ~ ) 5 t ~  1, whereI'= { ( x ' , O ) E R " :  lx'l <3/4} .  
Then IIu I I L z ( B ~ , ~ )  5 ct" for some positive constants C ,  (Y which depetid only on n ,  A, 
KI 3 K2. 

Proof of Theorem 4.2: From the proof of Theorem 4.1, we see that, for p E 
(0 ,  i ) ,  x*  E M ,  and for some C = C ( n ,  g, M )  > 0, 

We want to deduce the same doubling condition for U restricted to the hyperplane 
y = 0 that is, by (4.6), 

for p E (0,  a), x* E M and a constant C which (possibly different from that in 
(4.15)) depends only on M and g. 

Since u( * ,  t )  is real-analytic, the discussion in Section 3 can easily be applied 
to u( ., t ) .  We conclude, from (4.16), that (4.14) is true. 

To show (4.16) we need Lemma 4.3. By a rescaling, we may assume p = 1 / 2  
and x* = 0 for simplicity. We normalize U so that 

Hence by (4.15) we have 
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Let E = Ilu( ., t ) I I H f ( r )  = IliillHt(r), since (aulay) = 0 on r = { ( x ,  0) : x E 
B3/8 (0 ) } ,  one has, by Lemma 4.3 and (4.17), that 

(4.18) 2 4 - c ~ o .  

Finally we also have, by the elliptic interior estimate, that 

Combining (4.19) and (4.20), we obtain a doubling condition (4.16) for 
u2( * ,  t )  on M .  This completes the proof of Theorem 4.2. 

Proof of Lemma 4.3: Let q be a smooth cutoff function such that q = 1 on 
BSl8(O) ,  q = 0 outside B1,4(0) ,  and J V q l  i C. Let uI be the solution of 

(4.21) 

Lul = 0 in B, 

uI  = qu on I’ 
uI  = 0 on dB, - r 

and let u2 = u - uI . Since 11 u (IH,(r) 5 t, it is clear that 

(4.22) 

Now we consider u2. From (4.2 1 ) we have 

(4.23) Lu2=0  in B+, u 2 =  u - q u  on dB,. 

Moreover, 

It suffices to show that 11 u211L~(B;,2) i eta. This was done by a version of Carle- 
man’s inequality (see [14]). 
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[ r ( x )  for XEB, 
u : ( x )  = 

for X E  B- ' 

and let q be as above; we apply Carleman's inequality to the function qu; to obtain, 
for all large t < 0, that 

Here 4(xn)  = (x,, + Q) + t ( x n  + Q)'. 
As in [ 91, we obtain from (4.24) the following: 

Here A < B < C are positive constants. Hence 

for all large negative t . 
We choose t so that 

i.e., 

Then 

follows from (4.26). 

Remark (a).  
by Theorem 1.3, that 

Let u be a nonzero solution of ( 1.1 1 ) in BI (0). Then we see, 

for a E B I  -r,,(0) and r E (0, Yo), where N = N ( a ,  ro) and c is a positive constant 
which depends on A, n, Kl , K 2 .  
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Suppose now u ( a )  = 0 and I',(a) is the intersection of the ball &(a)  with a 
hyperplane passing through a .  Then Lemma 4.3 implies that 

for some positive constants c and a as in Lemma 2. Here 

By Poincarss inequality, one has also that 

Therefore 

for p E (0, ro).  

Remark (b). As in [ 3 1, Theorem 4.2 remains true in the case that dM # 
and is real analytic. Also one can easily generalize Theorem 4.2 to the case that 

u, = Lu in D X (0, m) ,  

on dDX(0, m),  

where D 5 [w" is the bounded domain with real analytic boundary, and L is as in 
( 1.1 1 ), where all coefficients are real analytic in 32. If D and L are only suitably 
smooth, then a weak estimate as in [ 51  is valid. 

It is easy to see from (4.7) that if h ( x )  = 4 ( x )  for somej, then 
+ sinh 4 6 ) / ( 2 %  + sinh 2%) S max(1og 2,3G). Theorem 

4.2 implies, in particular, that 

{ x E M : dj( x )  = 0 } s c( n , g, M )  6. Hn- I 
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We should point out that in general it is possible to estimate H"-' { x E 
M :  u ( x ,  t )  = 0} in terms of 

n 

for suitably large t (say t 2 1 ). One notices also that A( t )  is a monotone nonincreasing 
function of t .  
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