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Abstract

We give a proof of the growth bound of Laplace–Beltrami eigenfunctions due to Donnelly and
Fefferman which is probably the easiest and the most elementary one. Our proof also gives
new quantitative geometric estimates in terms of curvature bounds which improve and simplify
previous work by Garofalo and Lin. The proof is based on a generalization of a convexity property
of harmonic functions in R

n to harmonic functions on Riemannian manifolds following Agmon’s
ideas.

1. Introduction

In their seminal paper [6], Donnelly and Fefferman found growth bounds (DF-growth
bound) for eigenfunctions on compact Riemannian manifolds. Roughly, they showed that a
λ-eigenfunction grows like a polynomial of order

√
λ at most. This result is central in the

study of eigenfunctions. In [6], it was applied to prove Yau’s conjecture on real analytic
manifolds. Namely, sharp upper and lower bounds on the size of the nodal set on real analytic
manifolds were found. The proof of the growth bound in [6] went through a fine version of a
Carleman-type inequality for the operator Δ + λ, with a careful geometric choice of the weight
function.

Soon after, Lin [12], based on an earlier work with Garofalo [7], gave a simpler proof of
the growth bound. This proof is based on properties of the spherical L2-norm, q(r) (defined
in (2.1)), for harmonic functions. It had been known [1, 3] that in R

n, log q is monotonically
increasing and convex as a function of log r. Equivalently, rq′(r)/q(r) is monotonically
increasing. Garofalo–Lin showed that for a harmonic function defined on a general Riemannian
manifold eΛrrq′/q is monotonically increasing in (0, R), where Λ and R are some positive
constants depending on bounds on the Riemannian metric, on its first derivatives and on the
ellipticity constant of the Riemannian metric. This result can be viewed as an approximated
convexity result. The proof of this result was based on a non-trivial geometric variational
argument which was first used by Almgren [3].

The first aim of this paper is to give new geometric estimates on Λ and R in terms of the
curvature of the manifold. Namely, we find that all one needs is a lower and an upper bound on
the sectional curvature in order to guarantee the existence of Λ and R. Moreover, we show that
in fact eC1r2Krq′(r)/q(r) is monotonic in (0, R), where K is an upper bound on the curvature,
R is the minimum of C2/

√
K+ and the injectivity radius, and C1, C2 depend only on the

dimension of the manifold. We emphasize that our result distinguishes between negative and
positive curvatures. This is the content of the main Theorem 2.2.
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The second aim of this paper is to have a simple proof of the DF-growth bound for
eigenfunctions. Owing to the importance of this result, three simplifications to its proof had
previously been given by different authors in the course of the years, which we briefly survey.

The idea of Lin [9, 12] was to consider a conic manifold, N , over M and to extend the
eigenfunction uλ to a harmonic function on N . Then, Lin applied the monotonicity property
of eΛrrq′/q from [7] to the harmonic function obtained, and went back to the eigenfunction.

In [10], Jerison and Lebeau applied a similar extension of eigenfunctions. Then, they
could use standard Carleman-type inequalities for harmonic functions, instead of the original
approach taken by Donnelly and Fefferman in which a special and delicate Carleman-type
inequality for eigenfunctions was used.

In two dimensions, Nazarov–Polterovich–Sodin [13] took advantage of the conformal coor-
dinates, thus allowing them to simplify the problem by considering only the standard Laplace
operator in R

2. Then, they extend the eigenfunction to a harmonic function on N = M × R,
and apply the convexity argument to the harmonic function (in R

3) obtained. Their proof of
the convexity of log q is considerably simpler than the variational approach taken in [7]. It is
close in spirit to Agmon’s approach. This gives the easiest proof of the DF-growth bound in two
dimensions, since there is no need for variational arguments or Carleman-type inequalities at all.

This paper extends the work started in [13], to dimensions greater than or equal to three,
where no conformal coordinates exist. We follow and generalize Agmon’s ideas in [1], where
a general approximated convexity theorem for second-order elliptic equations is proved by
considering them as an abstract second-order ordinary differential equation. Our contribution
here comes in adding the geometric point of view, clarifying the way curvature affects the
Euclidean result. Our proof also simplifies and improves Agmon’s results in [1]. In this way,
we are able to circumvent the need to use the non-trivial variational argument in [7] or any
Carleman-type inequality.

Organization of the paper. The main result is presented in Section 2. In Section 3, we
recall a way that eigenfunctions can be extended to harmonic functions and the translation of
the convexity property of harmonic functions to a local growth bound on eigenfunctions. In
Section 4, we conclude the proof of the DF-growth bound on compact manifolds and we outline
the proof of Yau’s conjecture in [6]. Sections 3 and 4 are strongly based on [13]. In Section 5,
we give the proof of the main theorem. In Section 6, we consider constant curvature manifolds
as examples to the main theorem and find a second proof in some of these cases. In Section 7,
we discuss several open questions.

Notation. Throughout this paper Ci and Ci(n) denote positive constants which depend only
on dimension. The positive constants Cg(. . .) depend on bounds on the metric g, its first
derivatives, its ellipticity constant and additional parameters appearing in parentheses.

2. Main Theorem: a perturbed log-convexity property of harmonic functions

Let u be a harmonic function in R
n. Let q(r) denote the square of the spherical L2-norm:

q(r) :=
∫
Sr

u2 dσr,

where Sr denotes the sphere of radius r centred at 0, and dσr is the standard area measure
on Sr. It is easy to check that q is a convex function of log r. It turns out that even log q is a
convex function of log r.

Theorem 2.1 [1]. The function q has the following two properties:

(i) (log q)′(r) � (n − 1)/r;
(ii) (log q)′′(r) + (1/r)(log q)′(r) � 0.
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In two dimensions, this can be seen by a complex analysis argument. In higher dimensions,
this fact goes back at least to Agmon [1], and it was rediscovered by Almgren [3]. Landis [11,
Chapter II.2] also found several results close in spirit to that one. All these kinds of results were
inspired by Hadamard’s three circles theorem (see [2, Chapter 6.2]), which shows log-convexity
of the spherical L∞-norm for a holomorphic function.

Remark. It is somewhat surprising that the fundamental solution does not play a role
here: log q is a convex function of log r in all dimensions. The weaker statement is that log q is
a convex function of G(r) = −1/rn−2, which is equivalent to (log q)′′(r) + n−1

r (log q)′(r) � 0.

When considering harmonic functions on manifolds, one expects a perturbed version of
Theorem 2.1 in small geodesic balls. However, it is not clear a priori how far from the centre
this perturbation goes and how curvature controls it. Theorem 2.2 will give an answer to these
questions. Let u be a harmonic function defined in a small geodesic ball of a Riemannian
manifold N . Let

q(r) :=
∫
S(r)

u2 dAr, (2.1)

where S(r) is a geodesic sphere centred at p ∈ N , and dAr is the area measure on S(r). We
let SecN denote the sectional curvature of N , K+ = max{K, 0}, Θ(K) equal one if K > 0 and
zero if K � 0,

sinK r =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

sin(r
√

K)√
K

, K > 0,

r, K = 0,

sinh(r
√−K)√−K

, K < 0,

and cotK r = (sinK r)′/(sinK r). We can now state our main result.

Theorem 2.2. Let N be a Riemannian manifold of n dimensions. Let u be a harmonic
function on a geodesic ball in N, and q be defined as in (2.1). Let κ,K ∈ R, κ � K. Let
R = min(inj(M), π/(2

√
K+)). We have the following statements.

(i) If SecN � K, then q(r)/(sinK r)n−1 is monotonically increasing for r < R. Equivalently,

(log q)′(r) � (n − 1)(cotK r).

(ii) If κ � SecN � K, then for r < R,

(log q)′′(r) + (cotK r)(log q)′(r) + (n + 1)(cotκ r − cotK r)(log q)′(r)

� −K − (n − 2)K+ − (n − 1)(K − κ) − n

2
(n − 1)(n − 2)(K − κ)Θ(K).

The proof of the theorem is given in Section 5.

Remarks.

(1) The result shows that in the case where K < 0 and where K − κ is small we have actual
convexity, since the right-hand side in Theorem 2.2(ii) is positive. One could state part (ii)
of the theorem with the function q̃ = q/(sinK r)n−1 replacing q: then, the right-hand side
becomes −(n − 2)K− − c1(n)(K − κ) which gives ‘advantage’ to positive curvature (see also
the discussion in Section 7.2).
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(2) For the constant non-positive curvature case, we obtain an exact convexity statement
for log q.

(3) Comparing with the result of Garofalo and Lin [7], from Theorem 2.2(ii), one deduces
that ec2(n)r2Krq′(r)/q(r) is monotonically increasing for r < R. Observe that besides the
explicit estimates of Λ and R mentioned in the introduction this also gives a correction of
the result in [7] in the power of r in the exponential term. Moreover, the statement here is
more geometric in nature.

We would now like to have an integrated version of Theorem 2.2. We restrict our attention
to the case κ = −K, K > 0. We obtain a local doubling estimate for harmonic functions (see
proof in Section 5.5).

Corollary 2.3. Let N be a complete Riemannian manifold of dimension n with |SecN | �
K. Then

q(2r)
q(r)

�
(

q(2s)
q(s)

)1+c3(n)r2K

for all r < s < 1/(4
√

nK).

3. Harmonic extension of eigenfunctions

In this section, we recall a connection between harmonic functions and eigenfunctions found
in [10, 12, 13]. Let M be a Riemannian manifold of dimension m. Let uλ be a λ-eigenfunction
on M . Consider the direct product Riemannian manifold N = M × R of dimension n = m + 1,
where the metric on R is the standard one. Let H be the following function on N :

∀x ∈ M, t ∈ R, H(x, t) := uλ(x) cosh(
√

λt).

Observe that H extends uλ to N and is harmonic on N , since the Laplacian on N can be
written as

ΔNu = ΔMu +
∂2u

∂t2
.

On N, we take geodesic coordinates (r, θ1, . . . , θn−1) in a neighbourhood of the point (p, 0) ∈
N . In these coordinates, the metric gN takes the following form:

gN = dr2 + r2aij dθi dθj , 1 � i, j � n − 1.

We let θ̂ = (θ1, . . . , θm−1), and bij(r, θ̂) := aij(r, θ̂, 0), then

gM = dr2 + r2bij dθi dθj , 1 � i, j � m − 1.

Accordingly, the equation ΔNH = 0 can be written in these coordinates as

Hrr +
(

n − 1
r

+ γ(r, θ)
)

Hr +
1
r2

ΔS(r)H = 0,
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where γ(r, θ) = (
√

a)r/
√

a with a = det(aij), and ΔS(r) is the spherical Laplacian on the
geodesic sphere of radius r:

ΔS(r)H :=
1√
a

∂

∂θi

(√
aaij ∂H

∂θj

)
.

The following lemma relates q(r)1/2, the spherical L2-norm of the harmonic function H on
an (n − 1)-dimensional sphere of radius r, to Mr(uλ), the L∞-norm of the eigenfunction uλ on
an m = (n − 1)-dimensional ball of radius r. Let Mr(uλ) := maxB(p,r) |uλ(x)|.

Lemma 3.1. Suppose M is a complete Riemannian manifold with bounded geometry. Fix
0 < α < 1. Then, for all 0 < r < injM ,

Cαrm(1 + r
√

λ)−mMαr(uλ)2 � q(r) � C2r
me2r

√
λMr(uλ)2,

where Cα depends both on α and the metric, and C2 depends on the metric alone.

Proof. Let us denote by dσ(θ̂) the standard volume form on the unit sphere of dimension
m − 1. Then

q(r) = 2
∫ r

0

∫
uλ(ρ, θ̂)2 cosh2(

√
λ
√

r2 − ρ2) · ρm−1

√
b(ρ, θ̂)

r√
r2 − ρ2

dθ̂ dρ

� CMr(uλ)2(3 + e2r
√

λ)
∫ r

0

∫
Sm−1

ρm−1 r√
r2 − ρ2

dσ(θ̂)dρ

= CωmrmMr(uλ)2(3 + e2r
√

λ),

where we used the fact that the volume element is bounded from above by the metric
[4, Chapter 11, Theorem 15].

On the other hand, we have

q(r) � 2
∫ r

0

∫
uλ(ρ, θ̂)2ρm−1

√
b dθ̂ dρ =

∫
Bm(p,r)

u2
λ d VolM .

Hence, from elliptic regularity we get

q(r) � CαMαr(uλ)2rm(1 + r
√

λ)−m,

where Cα depends on the metric and on α.

From Corollary 2.3 and Lemma 3.1 we obtain the following theorem.

Theorem 3.2. Let M be a complete Riemannian manifold of dimension m with |SecM | �
K. Then for all r � s < C/

√
K,

M3r(uλ)
M2r(uλ)

� C1e
C2 s

√
λ

(
M8s(uλ)
M3s(uλ)

)1+C3r2K

,

where the constants C2 and C3 denote positive constants which depend only on the injectivity
radius of M, while C1 depends on bounds on the metric, its derivatives and its ellipticity
constant.

Remark. The subindices 3r, 2r, 8s, and 3s can be replaced by βr, r, γs, and s, respectively,
where 1 < β < 2 and γ > β. The constants C2 and C3 can be taken to be independent of β
and γ, while C1 → ∞ as γ/β → 1.
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4. Two global growth estimates

In this section, we deduce from the local inequality in Theorem 3.2 two global results in the
compact case.

4.1. Large values on large balls

Theorem 4.1. Let M be a compact Riemannian manifold of dimension m. Then for all
eigenfunctions uλ and r > 0,

maxB(x,r) |uλ|
maxM |uλ| � Cg(r, dM )e−C2dM

√
λ ∀x ∈ M,

where dM is the diameter of M .

Proof. Normalize uλ so maxM |uλ| = 1. Take r = s in Theorem 3.2. We obtain

M3r(uλ)2+C3r2K � C1e
C2r

√
λM8r(uλ)1+C3r2KM2r(uλ) � C1e

C2r
√

λM2r(uλ). (4.1)

Let |uλ(x0)| = 1. Fix r0 > 0 small enough in order to apply Theorem 3.2. Take a point
x in M . There exists a sequence of points x0, x1, . . . , xN = x such that d(xk, xk+1) < r0 for
0 � k � N − 1, where N only depends on r0 and the diameter of M . Inequality (4.1) gives

max
B(xk,2r0)

|uλ| � C−1
1 e−C2r0

√
λ max

B(xk,3r0)
|uλ|2+C2r2K

� C−1
1 e−C2r0

√
λ max

B(xk−1,2r0)
|uλ|3. (4.2)

Multiplying the inequalities (4.2) for 1 � k � N gives

max
B(x,2r0)

|uλ| � C−N
1 e−C2Nr0

√
λ � C−N

1 e−C2d
√

λ.

4.2. Global DF growth bound

Theorem 4.2 [6]. For all eigenfunctions uλ, x ∈ M and r > 0,

maxB(x,3r) |uλ|
maxB(x,2r) |uλ| � Cg(dM )eC2dM

√
λ.

Proof. Let R > 0 be as in Theorem 4.1. If r � R, the theorem follows from Theorem 4.1.
Else, Theorems 3.2 and 4.1 tell us that

M3r(uλ)
M2r(uλ)

� Cge
C2R

√
λ

(
M8R(uλ)
M3R(uλ)

)2

� Cg(dM )e2C2dM

√
λ.

4.3. Outline of the proof of Yau’s conjecture for real analytic manifolds

In this section, we illustrate the importance of Theorem 4.2. We recall the following result.

Conjecture 4.3 [16]. Let M be a C∞ closed compact Riemannian manifold. Let uλ be
a λ-eigenfunction on M . Then

C1

√
λ � Voln−1({uλ = 0}) � C2

√
λ,

where C1 and C2 are constants independent of λ.
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The conjecture was proved in the case of real analytic Riemannian metrics in [6]. A major
ingredient in the proof of both bounds was Theorem 4.2. We outline here the main ideas
involved.
Lower bound. Let B ⊂ M be a ball of radius r = C/

√
λ such that uλ vanishes at the centre

of B. One can cover, say, 1
2 of the volume of M by a disjoint collection B of such balls [5].

One observes that if the growth of uλ in a ball B is smaller than, say, 20, then one can control
from below the size of the nodal set in B. This can be seen for harmonic functions in the unit
ball using the mean value principle and the isoperimetric inequality, and can be adapted to
eigenfunctions on balls of radius C/

√
λ.

The main claim is that on at least, say, 10% of the balls in the collection B, the growth is
bounded by 20. We sketch the main ideas involved in the proof of this claim.

(1) Let us assume M = {|x| < 30} ⊂ R
n. One can continue the function uλ to a holomorphic

function F on M × M ⊂ C
n, with F |M×{0} = uλ. We let Q ⊂ M × {0} be a Euclidean real

cube. A key fact is that due to Theorem 4.2, the growth of F in M × M is controlled by
√

λ.
(2) We subdivide Q to small subcubes Qν of side 1/

√
λ. In order to bound the growth of

uλ in a cube Qν by a constant independent of λ, it is enough to say that uλ(x) is close to the
average of u on Qν for most of the points x ∈ Qν .

(3) The last property behaves well under averaging. Therefore, it can be reduced to a
one-dimensional problem:

Q = [−1, 1] ⊂ R, B = {|z| < 2} ⊂ C,

where F is a holomorphic function defined on B, F |Q is real, and the growth of F in B is
bounded by

√
λ.

(4) For simplicity, let us assume that F is a polynomial (of one complex variable) of degree√
λ. We subdivide Q into subintervals Qν of size 1/

√
λ. One has to show that F |Qν

is close to
its average on Qν for at least 10% of these subintervals. Use the Hilbert transform to attack
the one-dimensional problem.

Upper bound. As before, we assume M = {|x| < 30} ⊂ R
n. The size of the nodal set is

estimated from above by an integral geometry argument. One needs to estimate from above
the number of zeros of uλ on intervals J ⊂ M . As in the lower bound case, we let F be the
holomorphic continuation of uλ to M × M ⊂ C

n. Given an interval J ⊂ M , one can consider
its complexification in M × M . This is a strip of real two dimensions, Ĵ ⊂ C

n, and F |Ĵ is
holomorphic. One uses Jensen’s formula on the function F |Ĵ in order to estimate from above
the number of zeros of F on J . In order to use Jensen’s formula one must have a bound on the
growth of F |Ĵ . This is where Theorem 4.2 comes in.

5. Proof of Theorem 2.2

5.1. Preliminary geometric estimates

Let N be a Riemannian manifold of dimension n. Fix a point p, and let r(x) = dist(x, p). Let

γK = Δr − (n − 1) cotK r;

γK is controlled by the curvature of N .

Lemma 5.1. If κ � SecN � K, then 0 � γK � (n − 1)(cotκ r − cotK r).

Proof. Both parts directly follow from the Hessian comparison theorem [4, 15].
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Lemma 5.2. Suppose κ � SecN � K. Then, we have

γK,r � −(n − 1)(K − κ).

Proof. We know [14, Chapter 9.1]

γK,r = (Δr)r +
n − 1

(sinK r)2
= −Ric(∂r, ∂r) − ‖Hess(r)‖2 +

n − 1
(sinK r)2

.

By the Hessian comparison theorem [15],

(cotK r)‖X‖2 � Hess(r)(X,X) � (cotκ r)‖X‖2. (5.1)

Hence,

|Hess(r)(X,X)|2 � (cotκ r)2‖X‖4.

We can choose an orthonormal basis (∂r, e1, . . . , en−1) in which Hess(r) is diagonalized. Then
we see

‖Hess(r)‖2 =
∑

|Hess(r)(ei, ei)|2 � (n − 1)(cotκ r)2.

Consequently,

γK,r � −(n − 1)K − (n − 1)(cotκ r)2 +
n − 1

(sinK r)2
= (n − 1)(cot2K r − cot2κ r)

� −(n − 1)(K − κ),

where the last inequality follows from Lemma 5.3 (iii), (iv).

Lemma 5.3.

(i) −1
3 � (

√
x cot

√
x)′ � 0 for all 0 � x < (π/2)2;

(ii) 0 � (
√

x coth
√

x)′ � 1
3 for all x � 0;

(iii) −1 � (x cot2
√

x)′ � 0 for all 0 � x < (π/2)2;
(iv) 0 � (x coth2 √x)′ � 1 for all x � 0.

Proof. We prove the right inequality in (ii): since y coth y � 1, we have (3y + 2y sinh2 y)′ �
3(cosh y sinh y)′. Integrating, we conclude

3y + 2y sinh2 y � 3 cosh y sinh y.

Equivalently, (y coth y)′ � 2y/3. Hence, (
√

x coth
√

x)′ � 1
3 .

We prove the left inequality in (iii):

(x cot2
√

x)′ = cot2
√

x −
√

x cot
√

x

sin2 √x
. (5.2)

Observe that for 0 � y < π/2,

y cot y � 1. (5.3)

From (5.2) and (5.3), it follows that

(x cot2
√

x)′ � cot2
√

x − 1
sin2 √x

= −1.

The proofs of all the other inequalities in the lemma are omitted.
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5.2. Choice of coordinates and notation

We take geodesic polar coordinates centred at p ∈ N . Fix any K ∈ R. The metric can be
written as

g = dr2 + (sinK r)2(aK)ij dθi dθj ,

where θi are coordinates on the standard unit sphere Sn−1 ⊂ R
n.

We denote the determinant of the matrix (aK)ij by aK . The Laplacian on N can be written as

(Δf)(r, θ) = frr(r, θ) + ((n − 1) cotK r + γK)fr(r, θ) +
1

(sinK r)2
(ΔSf(r, ·)) (θ),

where ΔS is the following operator acting on functions g defined on Sn−1:

(ΔSg)(θ) :=
1√
aK

∂

∂θi

(
aij

K

√
aK

∂g

∂θj

)
.

We emphasize that the definition of ΔS depends on our choice of K. With these definitions,
we also have

γK =
(
√

aK)r√
aK

.

5.3. Proof of Theorem 2.2(i)

We observe

q(r) =
∫

u2(sinK r)n−1√aK dθ,

where the integration is understood to be performed over the parameter space [0, π]n−2 × [0, 2π]
for Sn−1 in R

n−1. A straightforward computation shows the following.

Lemma 5.4.

q′(r) =
∫

2uur(sinK r)n−1√aK dθ +
∫

u2γK(sinK r)n−1√aK dθ

+ (n − 1)(cotK r)
∫

u2(sinK r)n−1√aK dθ.

Lemma 5.5. ∫
2uur(sinK r)n−1 √aK dθ � 0.

Proof. By Green’s formula and the harmonicity of u
∫

2uur(sinK r)n−1√aK dθ =
∫
∂B(p,r)

∂(u2)
∂n̂

dAr

=
∫
B(p,r)

Δ(u2) d Vol =
∫
B(p,r)

2|∇u|2 d Vol.

Proof of Theorem 2.2(i). Part (i) of the theorem follows directly from Lemmas 5.4, 5.5
and 5.1.
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5.4. Proof of Theorem 2.2 (ii)

Let w = (sinK r)lu, where l = (n − 2)/2, then w satisfies the equation

wrr + (cotK r + γK)wr + l(l + 1)Kw − l2w

(sinK r)2
+

ΔSw

(sinK r)2
= 0. (5.4)

Let

Q(r) =
∫

w(r, θ)2
√

aK dθ =
q(r)

sinK(r)
. (5.5)

Let us also set

∇Sw := (sinK r)
(
∇w − wr

∂

∂r

)
=

1
sinK r

aij
K

∂w

∂θi

∂

∂θj
;

note that ∇S is defined in this way in order to have Green’s formula:
∫

f(θ)(ΔSg)(θ)
√

aK dθ = −
∫
〈∇Sf,∇Sg〉√aK dθ. (5.6)

Note also that 〈∇Sw, ∂r〉 = 0.

Lemma 5.6.

(i) Q′(r) =
∫

2w(wr + γKw/2)
√

aK dθ;
(ii) Q′(r) � (n − 2)(cotK r)Q(r) � 0.

Proof. Part (i) is a direct calculation. Part (ii) is just another formulation of
Theorem 2.2(i).

A second direct calculation using equation (5.4) and formula (5.6) gives the following lemma.

Lemma 5.7.

Q′′(r) + (cotK r)Q′(r) = 2
∫ (

wr +
γK

2
w

)2 √
aK dθ +

2
(sinK r)2

∫
|∇Sw|2 dθ

+
2l2

(sinK r)2

∫
w2√aK dθ − 2l(l + 1)K

∫
w2√aK dθ

+
∫

w2

(
γK,r + γK cotK r +

γ2
K

2

)√
aK dθ.

Lemma 5.8.

Q′′(r) + (cotK r)Q′(r) � 2
∫ (

wr +
γK

2
w

)2 √
aK dθ

+
2

(sinK r)2

∫
|∇Sw|2√aK dθ +

2l2

(sinK r)2
Q

− 2l(l + 1)KQ − (n − 1)(K − κ)Q.
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Proof. This estimate is due to Lemma 5.7 and the estimates on γK and γK,r in Lemmas 5.1
and 5.2, respectively.

Immediately, we obtain the following result.

Lemma 5.9.

Q′′(r) + (cotK r)Q′(r) − Q′(r)2

Q(r)
� 2

∫ (
wr +

γK

2
w

)2 √
aK dθ

+
2

(sinK r)2

∫
|∇Sw|2√aK dθ

+
2l2

(sinK r)2
Q − 2l(l + 1)KQ − (n − 1)(K − κ)Q

− 4
(∫

w(wr + γKw/2)
√

aK dθ
)2

∫
w2

√
aK dθ

.

Lemma 5.10.

Q′′(r) + (cotK r)Q′(r) − Q′(r)2

Q(r)
+ (n − 1)(cotκ r − cotK r)Q′(r)

� ϕ(r)
(sinK r)2

+
2l2

(sinK r)2
Q − 2l(l + 1)KQ − (n − 1)(K − κ)Q,

where

ϕ(r) = −2(sinK r)2
∫

w2
r

√
aK dθ + 2

∫
|∇Sw|2 √aK dθ.

Proof.

Q′′(r) + (cotK r)Q′(r) − Q′(r)2

Q(r)

� 2
∫ (

wr +
γK

2
w

)2 √
aK dθ +

2
(sinK r)2

∫
|∇Sw|2√aK dθ

+
2l2

(sinK r)2
Q − 2l(l + 1)KQ − (n − 1)(K − κ)Q

− 2
(∫

w(wr + γKw/2)
√

aK dθ
)2

∫
w2

√
aK dθ

− 2
(∫

w(wr + γKw/2)
√

aK dθ
)2

∫
w2

√
aK dθ

� 2
(sinK r)2

∫
|∇Sw|2√aK dθ +

2l2

(sinK r)2
Q − 2l(l + 1)KQ

− (n − 1)(K − κ)Q − 2
(∫

wwr
√

aK dθ +
∫

γKw2/2
√

aK dθ
)2

∫
w2

√
aK dθ

� ϕ(r)
(sinK r)2

+
2l2

(sinK r)2
Q −

∫
γKw2√aK dθ∫
w2

√
aK dθ

Q′ +
(
∫

γKw2√aK dθ)2

2
∫

w2
√

aK dθ

− 2l(l + 1)KQ − (n − 1)(K − κ)Q
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� ϕ(r)
(sinK r)2

+
2l2

(sinK r)2
Q

− (n − 1)(cotκ r − cotK r)Q′ − 2l(l + 1)KQ − (n − 1)(K − κ)Q.

The first inequality is just a rewriting of Lemma 5.9. In the second inequality, we applied the
Cauchy–Schwarz inequality to the last term. In the third inequality, we unfolded the parentheses
in the last term and applied the Cauchy–Schwarz inequality to the term

∫
wwr

√
aK dθ. In

the last inequality, we used the fact that Q′ � 0 (Lemma 5.6) and the estimates on γK in
Lemma 5.1.

It remains to control the function ϕ in terms of Q and Q′. We would first like to calculate
the derivative of ϕ. To that end, we recall the definition and some of the properties of the
Hessian as a bilinear form:

Hessf(X,Y ) := XY f − (∇XY )f = 〈Y,∇Xgradf〉 = 〈X,∇Y gradf〉.
In a geodesic ball centred at p, we have a radial field grad r = ∂r, tangent to the geodesics

emanating from p. Since ∂r is tangent to a geodesic, we have ∇∂r
∂r = 0. As a consequence,

(Hess r)(∂r, Y ) = 0 for all vectors Y . When computing the derivative of ϕ, it is convenient to
have the following formula.

Lemma 5.11.

(|∇Sf |2)r = 2〈∇Sf,∇Sfr〉 − 2 Hess(r)(∇Sf,∇Sf) + 2(cotK r)|∇Sf |2.

Proof.

2 Hess(r)(∇Sf,∇Sf) = 2(sinK r)2 Hess(r)(∇f,∇f)

= 2(sinK r)2〈∇f,∇∇f∂r〉 = 2(sinK r)2〈∇f,∇∂r
∇f + [∇f, ∂r]〉

= (sinK r)2(|∇f |2)r + 2(sinK r)2[∇f, ∂r]f

= −(sinK r)2(|∇f |2)r + 2(sinK r)2〈∇f,∇fr〉
= −(sinK r)2

(
f2

r + (sinK r)−2|∇Sf |2)
r

+ 2(sinK r)2frfrr

+ 2〈∇Sf,∇Sfr〉
= −(|∇Sf |2)r + 2(cotK r)|∇Sf |2 + 2〈∇Sf,∇Sfr〉.

Using the formula in Lemma 5.11, we can readily compute the derivative of ϕ(r) (defined in
Lemma 5.10).

Lemma 5.12.

ϕ′(r) = −4
∫

Hess(r)(∇Sw,∇Sw)
√

aK dθ

+ 4(cotK r)
∫
|∇Sw|2 √aK dθ + 2l(l + 1)K(sinK r)2Q′ − 2l2Q′

+ 2(sinK r)2
∫
|∇w|2γK

√
aK dθ

+ 2l2
∫

w2γK
√

aK dθ − 2l(l + 1)K sin2
K r

∫
w2γK

√
aK dθ.
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Lemma 5.13.

ϕ′(r) � −4(cotκ r − cotK r)
∫
|∇Sw|2√aK dθ + 2l(l + 1)K(sinK r)2Q′ − 2l2Q′

− 2l(l + 1)(n − 1)(cotκ r − cotK r)K+(sinK r)2Q.

Proof. This is due to inequality (5.1) and Lemma 5.12.

In Lemma 5.17, we integrate the inequality in Lemma 5.13. We need a few lemmas before
that.

Lemma 5.14.(
1 − 2

n

)
(sinK r)2Q(r) �

∫r

0

(sinK ρ)2Q′(ρ) dρ � (sinK r)2Q(r).

Proof. The right-hand side follows from the fact that sinK ρ is monotonically increasing in
ρ, and Q′ � 0. By differentiating the left-hand side, we see that it is enough to prove

(
1 − 2

n

)
(sinK r)2(2(cotK r)Q(r) + Q′(r)) � (sinK r)2Q′(r). (5.7)

Inequality (5.7) is equivalent to Lemma 5.6(ii).

Lemma 5.15.∫ r

0

∫
|∇Sw|2√aK dθ dρ � (sinK r)2

2
(Q′(r) − (n − 2)(cotK r)Q) .

Proof.∫ r

0

∫
|∇Sw|2√aK dθ dρ =

∫r

0

∫
|∇Su|2(sinK ρ)n−2√aK dθ dρ

�
∫ r

0

∫
|∇u|2(sinK ρ)n√aK dθ dρ

� sinK r

∫ r

0

∫
|∇u|2(sinK ρ)n−1√aK dθ dρ

= sinK r

∫
B(p,r)

|∇u|2 d Vol = sinK r

∫
uur(sinK r)n−1√aK dθ

= (sinK r)2
∫

wwr
√

aK dθ − l cotK r(sinK r)2
∫

w2√aK dθ

= (sinK r)2
∫

w(wr + γKw/2)
√

aK dθ

− l(cotK r)(sinK r)2
∫

w2√aK dθ − (sinK r)2
∫

w2γK/2
√

aK dθ

� (sinK r)2

2
(Q′(r) − (n − 2)(cotK r)Q).
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Lemma 5.16. ∫ r

0

(sinK ρ)2Q(ρ) dρ � r(sinK r)2Q(r).

Proof. The functions sinK ρ and Q(ρ) are monotonically increasing in ρ.

Lemma 5.17.

ϕ(r)
(sinK r)2

� −2(cotκ r − cotK r) (Q′ − (n − 2)(cotK r)Q)

+
n(n − 2)

2
KQ − (n − 2)K+Q − (n − 2)2Q

2(sinK r)2

− n

2
(n − 1)(n − 2)(cotκ r − cotK r)rK+Q.

Proof. Observe that the functions cotκ r − cotK r and sinK r are both monotonically
increasing. Hence, integrating Lemma 5.13, while applying Lemmas 5.14–5.16, we obtain

ϕ(r) � −4(cotκ r − cotK r)
∫ r

0

∫
|∇Sw|2√aK dθ dρ

+ 2l(l + 1)K
∫ r

0

(sinK ρ)2Q′(ρ) dρ − 2l2Q

− 2l(cotκ r − cotK r)K+

∫ r

0

(sinK ρ)2Q(ρ) dρ

� −2(sinK r)2(cotκ r − cotK r) (Q′ − (n − 2)(cotκ r − cotK r)(cotK r)Q)

+ 2l(l + 1)K(sinK r)2Q(r) − 2l(l + 1)K+(2/n)(sinK r)2Q − 2l2Q

− (n − 2)(cotκ r − cotK r)rK+(sinK r)2Q(r).

Proof of Theorem 2.2(ii). From Lemmas 5.10 and 5.17, we obtain

Q′′(r) + (cotK r)Q′(r) − Q′(r)2

Q(r)
+ (n − 1)(cotκ r − cotK r)Q′(r)

� −2(cotκ r − cotK r)Q′(r) + 2(n − 2)(cotκ r − cotK r)(cotK r)Q

+
n(n − 2)

2
KQ(r) − (n − 2)K+Q − (n − 2)2

2(sinK r)2
Q

− (n − 2)(cotκ r − cotK r)rK+Q − n(n − 2)
2

KQ

+
(n − 2)2

2(sinK r)2
Q − (n − 1)(K − κ)Q

= −2(cotκ r − cotK r)Q′(r) + 2(n − 2)(cotκ r − cotK r)(cotK r)Q

− (n − 2)K+Q −(n − 2)(cotκ r − cotK r)rK+Q −(n − 1)(K − κ)Q. (5.8)
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We obtain

(log Q)′′(r) + (cotK r)(log Q)′(r) + (n + 1)(cotκ r − cotK r)(log Q)′(r)

� −(n − 1)(K − κ) − (n − 2)K+ − (n − 2)(K − κ)
r2 K+

3
� −(2n − 3)(K − κ) − (n − 2)K+, (5.9)

where we applied Lemma 5.3(i),(ii). Recall q(r) = Q(r)(sinK r). A direct computation shows

(log sinK r)′′ + (cotK r)(log sinK r)′ + (n + 1)(cotκ r − cotK r)(log sinK r)′

= −K + (n + 1) cotK r(cotκ r − cotK r) � −K. (5.10)

Finally, summing (5.9) and (5.10) gives the statement in the theorem.

5.5. Proof of Corollary 2.3

Proof of Corollary 2.3. From Theorem 2.2,

q′′(r) + (cotK r)q′ + (n + 1)(cot−K r − cotK r)q′(r) � −(5n − 7)Kq. (5.11)

From Lemma 5.3 and from the fact that q′ � 0 (Theorem 2.2(i)) we know

(n + 1)(cot−K r − cotK r)q′ � 2(n + 1)rKq′/3. (5.12)

From Theorem 2.2(i), we know

− (5n − 7)Kq � −5Kq′(r)/ cotK r. (5.13)

It is easy to check 1/ cotK r � 2r for r � π/(3
√

K).
Hence, from inequalities (5.11)–(5.13) we obtain

q′′(r) +
1 + 8nr2K

r
q′ − q′(r)2

q(r)
� 0 (5.14)

for r
√

K < π/3. If we define l(t) = q(et), then (5.14) is equivalent to

l′′(t) + 8nKe2tl′(t) � 0 (5.15)

for t < −(log K)/2 + log(π/3). We will now integrate inequality (5.15).
Inequality (5.15) can be rewritten as (e4nKe2t

l′(t))′ � 0, from which we see that for s2 < s1,

l′(s2) � e4nK(e2s1−e2s2 )l′(s1) � e4nKe2s1
l′(s1), (5.16)

where the last inequality is true since l′(s) � 0 from Theorem 2.2(i). Hence, for t2 < t1 such
that 16nKe2t1 < 1, and 0 � h � log 2,

l(t2 + h) − l(t2) =
∫h

0

l′(t2 + s) ds �
∫h

0

e4nKe2t1+2s

l′(t1 + s) ds

� e4nKe2t1+2h

(l(t1 + h) − l(t1))

� (1 + 32nKe2t1)(l(t1 + h) − l(t1)).

The last inequality follows from ex � 1 + 2x for 0 � x � 1.
Going back from the variable t to the variable r, we obtain the stated corollary.
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6. The case of constant curvature manifolds

We give a new proof of Theorem 2.1 and a second proof of Theorem 2.2 in the case of constant
non-zero curvature in two dimensions.

6.1. Zero curvature

Let ul(r, θ) = rl cos(lθ) and vl = rl sin(lθ); then qul
(r) = qvl

(r) = πr2l+1. It is obvious that
log ql is a convex function of log r.

Now, any harmonic function can be written as

u = a0 +
∞∑

l=1

alul(r, θ) + blvl(r, θ).

The functions ul(r, ·) and vl(r, ·) are pairwise orthogonal as functions on the unit circle for all
fixed r. For any two orthogonal functions f and g on the unit circle for all fixed r, we have
qf+g(r) = qf (r) + qg(r). We also know that the sum of log-convex functions is log-convex and
the pointwise limit of log-convex functions is log-convex. These considerations give a short new
proof of Theorem 2.1.

Remark. A similar argument also carries in dimensions greater than or equal to three.

6.2. Positive curvature, two dimensions

The metric on the two-dimensional sphere of constant curvature K > 0 is given by

ds2 = dr2 + (sinK r)2 dθ2.

Here, 0 < r < π/
√

K, and 0 � θ � 2π. Hence,

qK
u (r) =

∫2π

0

u(r, θ)2(sinK r) dθ.

We also define q0
f (r) =

∫2π

0
f(r, θ)2r dθ for functions defined on R

2.
Let f(r, θ) be defined on R

2 by u(r, θ) = f(tan(r
√

K/2), θ); then f is related to u by a stereo-
graphic projection. Since harmonic functions are preserved under conformal transformations in
two dimensions, f(r, θ) is harmonic if and only if u(r, θ) is harmonic. We also note the relation

qK
u (r) =

q0
f (tan(r

√
K/2))

tan(r
√

K/2)
sinK r.

Suppose now f is harmonic. Then, from the fact that log q0
f is a convex function of log r, we

obtain the following.

Theorem 6.1. If K > 0, then

(log qK
u )′′(r) + (cotK r)(log qK

u )′(r) � −K.
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6.3. Negative curvature

In the spherical example one can replace all trigonometric functions by the corresponding
hyperbolic functions and obtain the following result.

Theorem 6.2. If K < 0, then

(log qK
u )′′(r) + (cotK r)(log qK

u )′(r) � −K > 0.

7. Discussion

We raise several questions which we find interesting to pursue.

7.1. Beyond the injectivity radius

It would be interesting to understand whether Theorem 2.2 remains true beyond the
injectivity radius as long as r

√
K+ < π/2 in the spirit of Bishop–Gromov’s volume comparison

theorem [8].

7.2. Proof by an orthogonal basis of functions

In a manifold of constant curvature K �= 0, of dimension greater than or equal to three, we
would like to have a simple proof, inspired by the proof presented in Section 6 for the case
K = 0. This would also shed light on the sharpness of Theorem 2.2 in dimensions n � 3.

7.3. Ricci curvature

Can one of the bound assumptions on the sectional curvature in Theorem 2.2 be relaxed to a
bound on the Ricci curvature?

7.4. Eigenfunctions on negatively curved manifolds

Can we replace the extension procedure described in Section 3 by a procedure which will give
us more information on the growth of eigenfunctions on negatively curved manifolds?

7.5. A comparison theorem for positive harmonic functions

Let f(θ) be a 2π-periodic non-negative function. Let u be a solution of the Dirichlet problem in
the unit disk: Δu = 0 with u(1, θ) = f(θ). Now, suppose we consider the unit geodesic disk in
a Riemannian manifold with non-positive variable curvature, and solve the Dirichlet problem
there. We obtain a solution v(r, θ). Can we compare the values of u to the values of v? Or
equivalently, can we compare the Poisson kernels involved?
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662 CONVEXITY PROPERTIES OF HARMONIC FUNCTIONS

2. L. V. Ahlfors, An introduction to the theory of analytic functions of one complex variable, Complex
analysis, 3rd edn., International Series in Pure and Applied Mathematics (McGraw-Hill, New York, 1978).

3. F. J. Almgren Jr., Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing
integral currents, Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977),
North-Holland, Amsterdam, 1979, pp. 1–6.

4. R. L. Bishop and R. J. Crittenden, Geometry of manifolds, Pure and Applied Mathematics XV
(Academic Press, New York, 1964).
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