Correction to page 367 of Harmonic Measure.

C. J. Bishop noticed recently that the counting argument just after (2.15) is incomplete. With thanks, we replace it here by an argument due to Bishop that will appear in his forthcoming book "Fractals in Analysis and Probability" with Y. Peres.

On page 367 replace the 8 lines beginning "We first prove" by the following:
We first prove the right-hand inequality of (2.14), that there exists a curve $\Gamma \supset E$ with $\Lambda_{1}(\Gamma) \leq c_{2} \beta^{2}(E)$. As in the proof of Theorem 2.1 we construct the rectangles S_{I} and write L_{I} for the longer side of S_{I} and $\beta_{I} L_{I}$ for its shorter side. If S_{0} and S_{1} are the two immediate descendents of a rectangle $S=S_{I}$, then

$$
\begin{equation*}
L_{0}+L_{1} \leq L+c_{3} \beta_{I}^{2} L_{I} \tag{*}
\end{equation*}
$$

In Case $1\left(^{*}\right)$ follows from (2.8) and in Case $2\left(^{*}\right)$ is trivial. For $I=\left(i_{1}, i_{2}, \ldots, i_{n}\right), i_{j}=0,1$ define

$$
E_{I}=\bigcap\left\{S_{J} \cap A_{J}: J=\left(i_{1}, i_{2}, \ldots ., i_{m}\right), m \leq n\right\}
$$

Then $E \subset \bigcup\left\{E_{I}:|I|=n\right\}, E_{I}^{o} \cap E_{J}^{o}=\emptyset$ if $|I|=|J|$ and $I \neq J$, and

$$
L_{I} \leq \operatorname{diam}\left(E_{I}\right) \leq \operatorname{diam}\left(S_{I}\right) \leq \sqrt{2} L_{I}
$$

because E_{I} meets each side of S_{I}. It then follows from the decay rate for diam $\left(S_{I}\right)$ that

$$
\operatorname{diam}\left(E_{J}\right) \leq \frac{1}{2} \operatorname{diam}\left(E_{I}\right)
$$

if $|J| \geq|I|+48$ and I is an initial segment of J. Also, since E_{I} meets every side of S_{I},

$$
\operatorname{Area}\left(E_{I}\right) \geq c_{4} \operatorname{Area}\left(S_{I}\right)=c_{4} \beta_{I} L_{I}^{2} .
$$

For any dyadic cube Q define

$$
\mathcal{E}(Q)=\left\{E_{I}: E_{I} \cap Q \neq \emptyset, \operatorname{diam}\left(E_{I}\right) \leq \ell(Q) \leq 2 \operatorname{diam}\left(E_{I}\right)\right\}
$$

Then the union $\bigcup\left\{E_{I}: E_{I} \subset \mathcal{E}(Q)\right\}$ falls inside the narrowest strip containing $E \cap 3 Q$ and covers Area almost every point of $E \cap 3 Q$ at most 48 times. Hence

$$
\sum_{\mathcal{E}(Q)} \operatorname{Area}\left(E_{I}\right) \leq c_{5} \beta_{E}(3 Q)(\ell(Q))^{2}
$$

so that

$$
\begin{equation*}
\sum_{\mathcal{E}(Q)} \beta_{I} \leq c_{6} \beta_{E}(3 Q) \tag{**}
\end{equation*}
$$

Now let $R_{n}=\sum_{|I|=n} L_{I}$. Then by $\left({ }^{*}\right)$ and induction

$$
R_{n} \leq c_{7} \operatorname{diam}(E)+c_{8} \sum_{Q} \sum_{\mathcal{E}(Q)} \beta_{I}^{2} L_{I}
$$

On the other hand since $\beta_{I} \geq 0$,

$$
\sum_{\mathcal{E}(Q)} \beta_{I}^{2} \leq\left(\sum_{\mathcal{E}(Q)} \beta_{I}\right)^{2} \leq c_{6}^{2} \beta_{E}^{2}(3 Q)
$$

by $\left({ }^{* *}\right)$. Therefore

$$
R_{n} \leq c_{7} \operatorname{diam}(E)+c_{9} \sum_{Q} \beta_{E}^{2}(3 Q) \ell(Q) \leq C \beta^{2}(E)
$$

Now continue on page 367 from the phrase "To estimate the lengths
\qquad

