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AREA, CAPACITY AND DIAMETER VERSIONS
OF SCHWARZ’S LEMMA

ROBERT B. BURCKEL, DONALD E. MARSHALL, DAVID MINDA,
PIETRO POGGI-CORRADINI, AND THOMAS J. RANSFORD

Abstract. The now canonical proof of Schwarz’s Lemma appeared in a 1907
paper of Carathéodory, who attributed it to Erhard Schmidt. Since then,
Schwarz’s Lemma has acquired considerable fame, with multiple extensions
and generalizations. Much less known is that, in the same year 1907, Landau
and Toeplitz obtained a similar result where the diameter of the image set takes
over the role of the maximum modulus of the function. We give a new proof
of this result and extend it to include bounds on the growth of the maximum
modulus. We also develop a more general approach in which the size of the
image is estimated in several geometric ways via notions of radius, diameter,
perimeter, area, capacity, etc.

1. Introduction

1.1. Schwarz’s Lemma. First, let us set the following standard notations: C

denotes the complex numbers, D := {z ∈ C : |z| < 1} is the open unit disk,
and T := {z ∈ C : |z| = 1} is the unit circle. Moreover, for r > 0, we let
rD := {z ∈ C : |z| < r} and rT := {z ∈ C : |z| = r}. Also, we will say that a
function is linear if it is of the form f(z) = az + b with a, b ∈ C (in particular, it
may be constant).

Given a function f that is analytic in D, and given the exhaustion {rD}0≤r≤1,
consider the corresponding image-sets

f(rD) = {w ∈ C : there is at least one z ∈ rD such that f(z) = w}.
Let us emphasize that we will not consider “multiplicity” in this paper. So f(rD)
denotes a family of open connected sets in C that are increasing with r. The goal
is to fix a geometric quantity so as to measure the size of f(rD) and study how
it varies with r. In particular, it turns out that linear functions seem always to
exhibit a uniquely exceptional behavior.

To illustrate this point of view, we first consider the famous Schwarz’s Lemma.
We introduce the following notion of “radius”:

(1.1) Rad f(rD) := sup
|z|<r

|f(z) − f(0)|.
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Geometrically, Rad f(rD) is the radius of the smallest disk centered at f(0) which
contains f(rD). As a point of warning, the way Schwarz’s Lemma will be presented
below might look unusual, but the proof is exactly the same.

Theorem 1.1 (Schwarz’s Lemma). Suppose f is analytic on the unit disk D. Then
the function φRad(r) := r−1 Rad f(rD) is strictly increasing for 0 < r < 1, except
when f is linear, in which case φRad is constant. Moreover, limr↓0 φRad(r) = |f ′(0)|.
Corollary 1.2. Suppose f is analytic on the unit disk D with Rad f(D) = 1. Then

(1.2) Rad f(rD) ≤ r for every 0 < r < 1,

and

(1.3) |f ′(0)| ≤ 1.

Moreover, equality holds in (1.2) for some 0 < r < 1, or in (1.3), if and only if f(z)
is an Euclidean isometry a + cz for some constants a ∈ C, c ∈ T.

The standard way to prove Schwarz’s Lemma is to factor f(z) − f(0) = zg(z),
for some analytic function g and then apply the maximum modulus theorem to g
to deduce that

(1.4) r−1 Rad f(rD) = sup
|z|<r

|g(z)|.

This argument first appeared in a paper of Carathéodory [Cara1907] where the idea
is attributed to E. Schmidt; see Remmert [Re1991, p. 272–273] and Lichtenstein
[Li1919, footnote 427] for historical accounts.

1.2. The theorem of Landau and Toeplitz. In a 1907 paper, Landau and
Toeplitz replaced the radius (1.1) by the diameter of the image set

(1.5) Diam f(rD) := sup
z,w∈rD

|f(z) − f(w)|.

Theorem 1.3 (Landau-Toeplitz [LaT1907]). Suppose f is analytic on the unit disk
D and Diam f(D) = 2. Then

(1.6) Diam f(rD) ≤ 2r for every 0 < r < 1,

and

(1.7) |f ′(0)| ≤ 1.

Moreover, equality holds in (1.6) for some 0 < r < 1, or in (1.7), if and only if f(z)
is an Euclidean isometry a + cz for some constants a ∈ C, c ∈ T.

Remark 1.4. The main contribution of the Landau-Toeplitz paper is perhaps its
elucidation of the extremal case. Pólya and Szegő mention the inequality (1.7)
on p. 151 and p. 356 of the classic book [PolS1972], and they cite the paper of
Landau and Toeplitz. However, they say nothing about when equality holds. It is
also worth mentioning the proof of Lemma 2.9 in [GeH1999], where F.W. Gehring
and K. Hag essentially treat the case of equality in Theorem 1.3 in the special
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case of one-to-one maps, using the Cauchy-Schwarz inequality and the so-called
“isodiametric” inequality.

Remark 1.5. The growth estimate on the diameter (1.6) should be viewed in analogy
with the classical growth bound (1.2). Notice, however, that Theorem 1.3 covers
the case when f(D) is an equilateral triangle of side-length 2, which is of course not
contained in a disk of radius 1; likewise, when f(D) is contained in the so-called
Reuleaux triangle that is obtained from the equilateral triangle by joining adjacent
vertices by a circular arc having center at the third vertex.

We start by giving a new proof of the Landau-Toeplitz Theorem that can be
used to prove more general cases as well. Later we will show how the original proof
of Landau and Toeplitz can be adapted to some of these more general cases. The
Landau-Toeplitz approach is more direct but seems to accomplish less.

1.3. Higher-diameters and log-convexity. As we already mentioned in Re-
mark 1.5, the Landau-Toeplitz result generalizes the bounds on |f ′(0)| that can be
deduced from Schwarz’s Lemma. It is therefore natural to ask if there are other
conditions on analytic functions f : D → C, weaker than Diam f(D) ≤ 2, which
imply |f ′(0)| ≤ 1 with equality if and only if f is an Euclidean isometry. Also, it
follows from (1.4) and Hadamard’s three-circles theorem that φRad(r) is not only
strictly increasing (except when f is linear), but it is also log-convex, i.e., it is a
convex function of log r. In fact, even more is true: its logarithm is log-convex.
Thus, a more general question arises: assuming that f is not linear, is the function
φDiam(r) := (2r)−1 Diam f(rD) strictly increasing and log-convex?

Other geometric quantities may be used to measure the size of the image of an
analytic function. In this paper we will focus on n-diameter, capacity, area and
perimeter. In [PolS1951] Pólya and Szegő also consider other quantities such as the
moment of inertia, the torsional rigidity, and the principal frequency. Such topics
deserve to be explored but we reserve to do this in another paper.

We focus at first on the so-called higher-order diameters, which are defined for
sets E ⊂ C as follows: fix n = 2, 3, 4, . . . , then

dn(E) := sup

⎛
⎝∏

j<k

|ζj − ζk|
⎞
⎠

2
n(n−1)

,

where the supremum is taken over all n-tuples of points from E. We say dn(E)
is the n-diameter of E. Note that d2(E) = DiamE, and that dn(E) is weakly
decreasing in n. Hence d∞(E) := limn→∞ dn(E) is well defined and is called
the transfinite diameter of E. It turns out that the transfinite diameter d∞(E)
coincides with the logarithmic capacity Cap(E); see the Fekete-Szegő Theorem
of [Ra1995, p. 153]. It can also be shown, see Fact 3.2 below, that dn(D) =
n1/(n−1).

The following inequality is due to Pólya; see [Pol1928] or [Ra1995, p. 145]. For
a compact set E in C,

(1.8) AreaE ≤ π Cap2 E.

Equality holds for a closed disk. Moreover, Corollary 6.2.4 of [Ra1995] asserts that

Cap(E) ≤ dn(E)
n1/(n−1)

.
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Hence, combining with (1.8), we obtain, for n = 2, 3, ...,

(1.9) AreaE ≤ π
dn(E)2

n2/(n−1)
.

The n = 2 case is sometimes called the “isodiametric” inequality.
Therefore, we see that the condition Area f(D) = π (= Area(D)) is more general

than Cap f(D) = 1 (= Cap(D)), which in turn is more general than dn(f(D)) =
n1/(n−1) (= dn(D)).

The first main result of this paper is the following generalization of the Landau-
Toeplitz Theorem. We consider the following ratios:

φn-Diam(r) :=
dn(f(rD))

dn(D)r
and φCap(r) :=

Cap(f(rD))
Cap(rD)

=
d∞(f(rD))

d∞(rD)
.

Theorem 1.6. Suppose f is analytic on D. The functions φCap(r) and φn-Diam(r)
are increasing and log-convex. Moreover, they are strictly increasing for 0 < r < 1
except in the special case that f is linear.

It can be checked from the power series expansion of f that the following limits
hold:

(1.10) lim
r↓0

φRad(r) = lim
r↓0

φn-Diam(r) = lim
r↓0

φCap(r) = |f ′(0)|.
Hence, we leave as an exercise to show that Theorem 1.6 implies the following
corollary.

Corollary 1.7. Suppose f is analytic on D and dn(f(D)) = dn(D) (or Cap f(D) =
Cap D). Then

dn(f(rD)) ≤ dn(D)r, for every r ∈ (0, 1)(1.11)

(resp. Cap f(rD) ≤ (Cap D)r)(1.12)

and

(1.13) |f ′(0)| ≤ 1.

Moreover, equality holds in (1.11) (resp. in (1.12)) for some 0 < r < 1, or in (1.13),
if and only if f(z) is an Euclidean isometry a+cz for some constants a ∈ C, c ∈ T.

Remark 1.8. It follows from the proof of Theorem 1.6 (see the proof of Lemma 2.1),
that φn-Diam(r) and φCap(r) have the stronger property that their logarithm is a
convex function of log r. This is also how Hadamard’s Theorem is usually phrased.

1.4. An area Schwarz Lemma. As mentioned above, the condition Area f(D)
= π is weaker than Diam f(D) = 2. We can prove the following analog of Schwarz’s
Lemma.

Theorem 1.9 (Area Schwarz’s Lemma). Suppose f is analytic on the unit disk
D. Then the function φArea(r) := (πr2)−1 Area f(rD) is strictly increasing for
0 < r < 1, except when f is linear, in which case φArea is constant.

Moreover, by the power series expansion, limr↓0 φArea(r) = |f ′(0)|. So the fol-
lowing corollary ensues.

Corollary 1.10. Suppose f is analytic on the unit disk D with Area f(D) = π.
Then

(1.14) Area f(rD) ≤ πr2 for every 0 < r < 1,
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and

(1.15) |f ′(0)| ≤ 1.

Moreover, equality holds in (1.14) for some 0 < r < 1, or in (1.15), if and only if
f(z) is an Euclidean isometry a + cz for some constants a ∈ C, c ∈ T.

One might ask whether φArea(r) is also log-convex as with the growth functions
φRad, φn-Diam, and φCap. This is true for univalent functions, but fails in general.
In Section 5 we give an explicit example for which φArea(r) is not log-convex.

1.5. Structure of the paper and other results. The structure of the paper
is as follows. In Section 2 we prove Theorem 1.6 about n-diameter and capacity
generalizations of Schwarz’s Lemma. In Section 3 we dust off the original approach
of Landau and Toeplitz and show that it can be made to work for n-diameters,
hence giving an alternative, more direct proof of Theorem 1.6 for n-diameter. In
Section 4 we explore an even further generalization of Schwarz’s Lemma using area
instead and prove Theorem 1.9. In Section 5, however, we give an example where
log-convexity fails. In Section 6, we formulate a generalization using perimeter.
This is our weakest result because log-convexity is missing and extra conditions
must be imposed on the range. In Section 7, we give some applications of these
Schwarz lemmas to hyperbolic geometry. In particular, we obtain the global lower
bound (7.2) for the Poincaré density on arbitrary domains. In Section 8, we study
bounds on the growth of |f(z)| under conditions on the image f(D) that involve
diameter instead of radius. In Section 9 we describe a related result of Poukka,
obtained around the same time as the Landau-Toeplitz paper, which involves higher
derivatives. Finally, in Section 10 we state some open problems.

2. Higher and transfinite diameter generalizations

of Schwarz’s Lemma

In this section we prove Theorem 1.6. The stronger notion of log-convexity turns
out to be essential to prove the sharp result.

Lemma 2.1. For f analytic on D and n = 2, 3, ..., both φn-Diam(r) and φCap(r)
are increasing convex functions of log r, 0 < r < 1.

Proof. Let f be analytic on D; we may assume that f(0) = 0 and that f is not
linear. It suffices to prove that φn-Diam(r) is an increasing convex function of log r,
since the corresponding result for φCap(r) then follows by a limit argument.

So fix n = 2, 3, ..., and consider the auxiliary function

(2.1) Fw1,...,wn
(z) := dn(D)−

n(n−1)
2

∏
j<k

(f(wkz) − f(wjz)),

for fixed distinct w1, . . . , wn ∈ D. Then Fw1,...,wn
(z) = z

n(n−1)
2 g(z), where g is

analytic in D. So

log
(
r−

n(n−1)
2 Rad Fw1,...,wn

(rD)
)

= max
|z|<r

log |g(z)|

is strictly increasing for 0 < r < 1, except in the special case when g(z) ≡ g(0);
in fact, by Hadamard’s three-circles Theorem it is also log-convex. Moreover, for
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fixed r ∈ (0, 1) we have

(2.2) max
w1,...,wn∈D

Rad Fw1,...,wn
(rD) =

(
dn(f(rD))

dn(D)

)n(n−1)
2

.

So the function

(2.3) log φn-Diam(r) = max
w1,...,wn∈D

log
(
r−

n(n−1)
2 Rad Fw1,...,wn

(rD)
) 2

n(n−1)

is the pointwise maximum of a family of increasing log-convex functions, hence it
is increasing and log-convex for 0 < r < 1. This implies that φn-Diam(r) itself must
be increasing and log-convex. So Lemma 2.1 is proved. �

Finally, we will need the following elementary lemma.

Lemma 2.2. Let f be analytic in D and not linear. Then there is 0 < r0 < 1 such
that for 0 < r < r0,

φArea(r) > |f ′(0)|2.
Proof. The statement is clear if f ′(0) = 0. So assume f ′(0) �= 0. Then f is one-to-
one near the origin and for r > 0 small

Area f(rD) =
∫

rD

|f ′(z)|2dH2(z) = π

∞∑
n=0

n|an|2r2n

(where H2 is two-dimensional Lebesgue measure). So φArea(r)=
∑∞

n=1 n|an|2r2(n−1)

is strictly increasing unless f is linear. �

Proof of Theorem 1.6. We do the proof for φCap(r), since the one for φn-Diam(r) is
the same except for the obvious changes, e.g., use (1.9) in place of (1.8) below.

By Lemma 2.1 the function φCap(r) is an increasing convex function of log r.
Suppose it fails to be strictly increasing. Then by monotonicity it must be constant
on an interval [s, t] for some 0 < s < t < 1. By log-convexity, it then would
have to be constant and equal to |f ′(0)| on all of the interval (0, t). But, for
0 < r < min{r0, t}, with r0 as in Lemma 2.2,

|f ′(0)|2 ≤ φArea(r) =
Area f(rD)

πr2
≤ φ2

Cap(r) = |f ′(0)|2,
where Pólya’s inequality (1.8) has been used. Therefore, φArea(r) is constant on
(0, t), so, by Lemma 2.2, f must be linear. �

3. The original Landau-Toeplitz approach

In this section we revive the original method of Landau and Toeplitz. We show
that it can be used to give a direct proof of Theorem 1.6 for n-diameters. However, it
seems that for capacity one really needs to use log-convexity and Pólya’s inequality.

The proof hinges on the following lemma.

Lemma 3.1. Suppose g is analytic in D, 0 < r < 1, |w| = r,

w = g(w) and r = max
|z|=r

|g(z)|.

Then, Im g′(w) = 0.
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Proof. Actually, the stronger conclusion g′(w) ≥ 0 is geometrically obvious because
when g′(w) �= 0, the map g is very close to the rotation-dilation centered at w given
by ζ 	→ w + g′(w)(ζ − w). Since g can’t rotate points inside D(0, |w|) to points
outside, the derivative must be positive.

For the sake of rigor, we instead give a “calculus” proof of the weaker statement,
along the lines of the original paper of Landau and Toeplitz, which they credit to
F. Hartogs.

For θ ∈ R, we introduce

φ(θ) := |g(weiθ)|2 = g(weiθ)g(weiθ).

The function g�(z) := g(z̄) is also analytic in D, and φ may be written

φ(θ) = g(weiθ)g�(w̄e−iθ),

enabling us to compute φ′(θ) via the product and chain rules. We get routinely,

φ′(θ) = −2 Im
[
weiθg′(weiθ)g(weiθ)

]
and setting θ = 0,

φ′(0) = −2 Im
[
wg′(w)g(w)

]
= −2 Im [wg′(w)w] = −2|w|2 Im g′(w).

Since φ realizes its maximum over R at θ = 0, we have φ′(0) = 0, so the preceding
equality proves Lemma 3.1. �

The following fact will also be important in the sequel.

Fact 3.2. Given n points {wj}n
j=1 ⊂ D,∏
j<k

|wj − wk| ≤ n
n
2

with equality if and only if, after relabeling, wj = uαj for some u ∈ T, where αj

are the n-th roots of unity: i.e., αj := exp(i(2πj)/n).

We briefly sketch here why this is so. Recall that given n complex numbers
{wj}n

j=1, one may form the Vandermonde matrix Vn := [wk−1
j ]nj,k=1, and that

(3.1) det Vn =
∏

1≤j<k≤n

(wk − wj).

Indeed, detVn is a polynomial of degree at most n − 1 in wn, vanishing at w1, . . . ,
wn−1 with coefficient of wn−1

n equal to detVn−1, so that (3.1) follows by induction.
Hadamard’s inequality states that for every n × n matrix A = [ajk] with complex
entries:

| det(A)| ≤
n∏

j=1

(
n∑

k=1

|ajk|2
) 1

2

,

with equality if and only if the rows of A are orthogonal.
Since all the entries of the matrix Vn are bounded by 1 in modulus, we find that

(3.2) | det(Vn)| ≤ n
n
2
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with equality if and only if the rows of Vn are orthogonal, i.e., if and only if

0 =
n∑

k=1

wk−1
j wl

k−1 =
(wjwl)n − 1
wjwl − 1

whenever j �= l. Fact 3.2 then follows.
It follows that the n-diameter of D is dn(D) = n1/(n−1) (which strictly decreases

to d∞(D) = 1), and it is attained exactly at the n-th roots of unity (modulo
rotations).

Landau-Toeplitz-type proof of Theorem 1.6 for n-diameter. Consider as before the
auxiliary function Fw1,...,wn

(z) defined in (2.1), for fixed distinct w1, . . . , wn ∈ D.
Then Fw1,...,wn

(z) = z
n(n−1)

2 g(z), where g is analytic in D and

(3.3) |g(0)| =
∣∣∣∣ f ′(0)
dn(D)

∣∣∣∣
n(n−1)

2 ∏
j<k

|wk − wj |.

As shown above, in the proof of Lemma 2.1, the function r 	→ (dn(D)r)−1dn(f(rD))
is increasing for 0 < r < 1. Assume that it is not strictly increasing. Then we can
find 0 < s < t < 1 so that it is constant on [s, t]. By (2.2) we can find distinct
w1, . . . , wn ∈ D so that

(3.4)
(

dn(f(sD))
dn(D)s

) n(n−1)
2

= s−
n(n−1)

2 Rad Fw1,...,wn
(sD).

But (2.2) also implies that(
dn(f(rD))

dn(D)r

)n(n−1)
2

≥ r−
n(n−1)

2 Rad Fw1,...,wn
(rD)

for every 0 < r ≤ t. In particular, letting r = t and by Schwarz’s Lemma (Theorem
1.1) applied to g (for this choice of wj ’s), we find that r−

n(n−1)
2 Rad Fw1,...,wn

(rD)
is constant for 0 < r ≤ t; hence by (3.4) and the monotonicity of φn-Diam(r),(

dn(f(rD))
dn(D)r

)n(n−1)
2

≡ r−
n(n−1)

2 Rad Fw1,...,wn
(rD)

=
( |f ′(0)|

dn(D)

)n(n−1)
2 ∏

j<k

|wj − wk|,
(3.5)

for 0 < r < t. In particular, either f is constant or f ′(0) �= 0. In what follows,
assume f is not constant.

We have

|f ′(0)|n(n−1)
2 = lim

z→0

1

(dn(D))
n(n−1)

2

∏
j<k

∣∣∣∣f(αkz) − f(αjz)
z

∣∣∣∣≤ lim
r→0

(
dn(f(rD))

rdn(D)

)n(n−1)
2

,

and so from (3.5), ∏
j<k

|wj − wk| ≥ (dn(D))
n(n−1)

2 ,

which implies that wj = uαj for some u ∈ T by Fact 3.2. By a rotation, we may
take u = 1.



AREA, CAPACITY AND DIAMETER VERSIONS OF SCHWARZ’S LEMMA 141

Therefore, we find that, for all z ∈ D,

(3.6) Fα1,...,αn(z) = dn(D)−
n(n−1)

2

∏
j<k

(f(αkz) − f(αjz)) = c(zf ′(0))
n(n−1)

2 ,

where c is a constant with |c| = 1. In particular, notice that f(zαk) − f(zαj) = 0
if and only if z = 0.

Now, fix 0 < |z| = r < t and consider the function

hz(ζ) :=
n−1∏
k=1

f(ζz) − f(zαk)
(1 − αk)zf ′(0)

∏
1<j<l≤n−1

f(zαl) − f(zαj)
(αl − αj)zf ′(0)

,

which is analytic for ζ ∈ D. Then by (3.6) and Fact 3.2,

|hz(1)| = 1 ≥ sup
|ζ|<1

|hz(ζ)|.

Note that,

h′
z(ζ) = hz(ζ)zf ′(ζz)

n−1∑
k=1

1
f(zζ) − f(zαk)

.

By Lemma 3.1 applied to hz(·)/hz(1), and the Open-Mapping Theorem there is a
real constant A so that

(3.7) zf ′(z)
n−1∑
k=1

1
f(z) − f(zαk)

= A,

for z ∈ tD \ {0}.
To show that (3.7) implies f is linear, we may suppose f(0) = 0, f ′(0) = 1. In

the n = 2 case (the one considered in the Landau-Toeplitz paper), the end-game is
much simpler. Here, in the general case, we proceed as follows. If f is not linear,
we may write f(z) = z + apz

p + . . . where ap �= 0, and p ≥ 2. Then

1
f ′(z)

= 1 − papz
p−1 + . . . ,

and
n−1∑
k=1

z

f(z) − f(zαk)
=

n−1∑
k=1

1
1 − αk

−
n−1∑
k=1

1 − αkp

(1 − αk)2
apz

p−1 + . . . .

This and (3.7) imply that

A =
n−1∑
k=1

1
1 − αk

and pA =
n−1∑
k=1

1 − αkp

(1 − αk)2
.

Recall that A is real and Re(1/(1 − αk)) = 1
2 , so that A = (n − 1)/2.

For 1 ≤ j ≤ n, by Fubini,

(3.8)
n−1∑
k=1

1 − αjk

1 − αk
=

n−1∑
k=1

j−1∑
q=0

αqk = n − 1 +
j−1∑
q=1

[
1 − αqn

1 − αq
− 1

]
= n − j

since αn = 1. So, if 1 ≤ p ≤ n, using Fubini, (3.8) and the definition of A, we get

(3.9)
n−1∑
k=1

1 − αkp

(1 − αk)2
=

n−1∑
k=1

p−1∑
j=0

αjk

1 − αk
= A+

p−1∑
j=1

[A−(n−j)] = pA−(n− p

2
)(p−1).
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The earlier identification of pA then leads to the conclusion that

(3.10) pA = pA − (n − p

2
)(p − 1),

which is a contradiction for 2 ≤ p ≤ n. If p > n and p ≡ p′ mod n, with p′ ≤ n,
then αkp = αkp′

so (3.9) again shows that

pA = p′A − (n − p′

2
)(p′ − 1)

which is impossible. Thus, the assumption that f is not linear is untenable. �

4. Area generalization of Schwarz’s Lemma

In this section we prove Theorem 1.9. This requires some preliminaries.
Let f be analytic and non-constant in a neighborhood of D. For every w ∈ f(D)

let
Z(w) := {zj(w)}N(w)

j=1

be the set of points in f |−1
D

(w) of minimum modulus. Note that 0 < N(w) < ∞.

Claim 4.1. The function w 	→ N(w) is Borel measurable on f(D).

Proof. Let C = {z ∈ D : f ′(z) = 0} be the set of critical points, which is finite,
and let P = f(C) be the finite post-critical set. Pick w0 ∈ f(D)\P . It is enough
to check Borel measurability of N near w0. By the argument principle, there
is a small disk D centered at w0 and there are M branches of the inverse of f
such that f |−1

D
(w) = {ζ1(w), . . . , ζM (w)} for every w ∈ D; see Theorem on p. 238

of [Gam2001]. Now, upon relabeling, Z(w0) = {ζj(w0)}M ′
j=1 for some M ′ ≤ M .

Moreover, restricting to a smaller disk D′ ⊂ D centered at w0, we can assume
using continuity of the branches that Z(w) ⊂ {ζj(w)}M ′

j=1 for every w ∈ D′. Since
each ζj is analytic, standard results show that N is Borel measurable. �

Now consider the set
E :=

⋃
w∈f(D)

Z(w).

Claim 4.2. The set D \ E is open.

Proof. Pick z0 ∈ D \E. Let w0 = f(z0). Then we can find z�
0 ∈ f−1(w0) such that

|z�
0 | < |z0|.

Assume that z0 is of order m − 1 and z�
0 of order m� − 1. Then, by the argument

principle, there are disks D = D(z0, ε) and D� = D(z�
0 , ε) with radius 0 < ε <

(|z0| − |z�
0 |)/3 small enough so that for every point z ∈ D, the value w = f(z) is

close enough to w0 to have at least one preimage z� in D�. Thus D ⊂ D \ E. �

Below we will need the following “Non-Univalent Change of Variables Formula”.

Theorem 4.3 (Theorem 2, p. 99 of [EG1992]). Let f : Rn → Rm be Lipschitz,
n ≤ m. Then for each integrable g : R

n → R,∫
Rn

g(x)Jf(x)dx =
∫

Rm

⎡
⎣ ∑

x∈f−1(y)

g(x)

⎤
⎦ dHn(y),

whenever either side converges, and where Jf is the Jacobian (determinant) of f .
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Proof of Theorem 1.9. Fix 0 < r < 1 and consider the integral

(4.1)
∫

D

χrD∩E(z)
N(f(z))

|f ′(z)|2dH2(z).

By the non-univalent change of variables (Theorem 4.3) applied to the function

g(z) =
χrD∩E(z)
N(f(z))

: D → R,

it equals ∫
f(D)

1
N(w)

∑
z∈f−1(w)

χrD∩E(z)dH2(w)

=
∫

f(rD∩E)

1
N(w)

∑
z∈f−1(w)

χrD∩Z(w)(z)dH2(w)

=
∫

f(rD∩E)

1
N(w)

∑
z∈Z(w)

1dH2(w)

= Area f(rD ∩ E)

= Area f(rD).

The last equality holds because w ∈ f(rD) if and only if Z(w) ⊂ rD if and only if
w ∈ f(rD ∩ E).

Thus,

Area f(rD) =
∫

D

χrD∩E(z)
N(f(z))

|f ′(z)|2dH2(z),

for 0 < r < 1. In particular, the function A(r) := Area f(rD) is absolutely contin-
uous.

By Fubini,

A(r) =
∫

D

χrD∩E(z)
N(f(z))

|f ′(z)|2dH2(z) =
∫ r

0

∫
sT

χE(z)
N(f(z))

|f ′(z)|2|dz|ds.

So we have
dA(r)

dr
=

∫
rT

χE(z)
N(f(z))

|f ′(z)|2|dz|.

By the Cauchy-Schwarz inequality,

dA(r)
dr

≥ 1
2πr

(∫
rT

χE(z)
N(f(z))

|f ′(z)||dz|
)2

.

Again, by the non-univalent change of variables (Theorem 4.3) applied to the func-
tion

g(z) =
χE(z)

N(f(z))
: rT → R,

we obtain∫
rT

χE(z)
N(f(z))

|f ′(z)||dz| =
∫

f(rT∩E)

1
N(w)

#(rT ∩ Z(w))dH1(w)

= Length f(rT ∩ E) = Length ∂f(rD).
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The last equality holds because w ∈ ∂f(rD) if and only if w ∈ f(rT ∩ E). Thus,
writing L(r) := Length ∂f(rD), we have shown that

dA(r)
dr

≥ L(r)2

2πr
.

The isoperimetric inequality [Lax1995] says that, for planar domains,

4π AreaΩ ≤ (Length ∂Ω)2.

So, we have

(4.2)
dA(r)

dr
≥ 2A(r)

r
.

Now consider the function φArea(r) defined in the statement of Theorem 1.9. We
have shown that it is absolutely continuous and its derivative is

dφArea(r)
dr

= −2π−1r−3A(r) + (πr2)−1 dA(r)
dr

= (πr2)−1

(
dA(r)

dr
− 2A(r)

r

)
≥ 0

by (4.2). Therefore, φArea(r) is an increasing function of r.
If φArea(r) is not strictly increasing, then there is 0 < s < t < 1 such that

φArea(r) = c for every s ≤ r ≤ t. This implies that φ′
Area(r) ≡ 0 on [s, t]. Hence,

dA(r)
dr

≡ L(r)2

2πr
≡ 2A(r)

r

on [s, t]. So the extremal case in the isoperimetric inequality shows that f(rD) is a
disk for s ≤ r ≤ t, with area πr2. Hence Rad f(rD) ≡ r on [s, t], and by Theorem
1.1, we conclude that f must be linear. �

We leave the proof of Corollary 1.10 as an exercise for the reader.

5. A counter-example to log-convexity

Notice that log φArea(r) is a convex function of log r if and only if log A(r)
is. Also, log A(r) is log-convex for all univalent functions. In fact, write f(z) =∑∞

n=0 anzn. If f is univalent, A(r) =
∑∞

n=0 n|an|2r2n. Then, by straight differen-
tiation, log

∑∞
n=1 n|an|2e2nx has non-negative second derivative if and only if

∞∑
n,k=1

4(nk3 − n2k2)|an|2|ak|2e(2n+2k)x ≥ 0.

If we switch n and k and add the results, it doesn’t affect the truth of non-negativity,
so the above will be non-negative if

nk3 + kn3 ≥ 2n2k2

dividing by n2k2 it suffices that k/n + n/k ≥ 2, which is true. In fact equality
occurs if and only if n = k, and hence we have a strictly positive second derivative
unless f(z) = czm, and by univalence, unless f is linear.

However, as the following example shows, neither log A(r) nor even A(r) is log-
convex in general.

Example 5.1. We study the function

f(z) = exp
(

ic log
(

1 + z

1 − z

))
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with c > 0, which is a universal cover of D onto the annulus {e−πc/2 < |z| < eπc/2}.
To compute A(r) we first apply the conformal map ψ(z) = i log

(
1+z
1−z

)
= u(z) +

iv(z) which sends rD into an oval contained in the vertical strip {|u| < π/2}. We
then notice that f(rD) \ (−∞, 0) is covered by the restriction of eπz to the part of
the oval which is in {|v| < π/c}. So a computation shows that f is univalent on rD

for r < tanh(π/(2c)) and that for tanh(π/(2c)) ≤ r < 1,

A(r) =
∫ π

0

2 sinh
(

2c arccos
(

1 − r2

1 + r2
cosh(t/c)

))
dt.

Writing Ac(r) for A(r) to emphasize the dependence on the parameter c, we then
study the asymptotics as c ↓ 0. We find that for x ∈ (0, 1),

lim
c↓0

Ac(e−x log coth(π/(2c))) − 2π sinh(cπ)
4c2

= −
∫ x

0

arcsin u

u
du.

But the right-hand side is a strictly concave function of x ∈ (0, 1), since its derivative
is minus the strictly increasing function x−1 arcsin x. Thus, for c > 0 sufficiently
small, Ac(r) cannot be log-convex.

6. Perimeter generalization of Schwarz’s Lemma

The results are not as strong when considering the notion of perimeter.

Proposition 6.1. Suppose Ω is a simply-connected domain. If F is a one-to-one
analytic map of D onto Ω, then r 	→ r−1 Length ∂(F (rD)) is strictly increasing,
unless F is linear. Hence, if ∂Ω is a Jordan curve with Euclidean length at most
2π, then

Length ∂(F (rD)) ≤ 2πr for every 0 < r < 1,(6.1)

|F ′(0)| ≤ 1.(6.2)

Moreover, equality holds in (6.1) for some 0 < r < 1, or in (6.2), if and only if
F (z) is an Euclidean isometry a + cz for some a ∈ C, c ∈ T.

Corollary 6.2. Suppose Ω is an simply-connected region in C and ∂Ω is a Jordan
curve with Euclidean length at most 2π. If f is analytic on D with values in Ω, then
|f ′(0)| ≤ 1 and equality holds if and only if f(z) is an Euclidean isometry a + cz
for some a ∈ C, c ∈ T.

Remark 6.3. The bound (6.2) also follows from the well-known result that the H1-
norm of F ′ is the length of the boundary of the image, together with the mean-value
inequality

|F ′(0)| ≤
∫

|F ′(reit)| dt

2π
.

The right-hand side converges to the H1-norm as r ↑ 1. Also the right side above
increases with r, so that r times the right side, is bounded above by r times the
right side evaluated at r = 1, and that gives (6.1).

Remark 6.4. The same “square root trick” used in the proof of Proposition 6.1
below can be used to prove the isoperimetric inequality; see [Carl1921] and [D1983,
exercise 3, page 25].

Remark 6.5. Lower bounds for area and perimeter of image disks can be found in
a paper of MacGregor [Mac1964] and they involve the derivative at the origin.
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Proof of Proposition 6.1. Let G(z) :=
∑∞

n=0 bnzn be an analytic square root in D

of the zero-free function F ′. Then F ′(0) = G2(0) and

r−1 Length∂(F (rD)) = r−1

∫
|z|=r

|F ′(z)||dz|

= r−1

∫
|z|=r

|G(z)|2|dz|

= 2π

∞∑
n=0

|bn|2r2n,(6.3)

which is strictly increasing for 0 < r < 1 unless bn = 0 for all n ≥ 1, i.e., unless F
is linear. The rest follows straightforwardly.

Also, the isoperimetric inequality [Lax1995] says that

4π AreaΩ ≤ (Length ∂Ω)2.

Therefore, AreaΩ ≤ π and by Corollary 1.10, |F ′(0)| ≤ 1, with equality if and only
if F (z) = a + cz identically for some a ∈ C, c ∈ T. �
Proof of Corollary 6.2. If f is analytic on D with values in Ω, let F be the Riemann
map of D onto Ω with F (0) = f(0) and F ′(0) > 0. Then g := F−1 ◦ f is a self-map
of the disk which fixes the origin and f = F ◦ g. So

|f ′(0)| = F ′(0)|g′(0)| ≤ F ′(0) ≤ 1

with equality if and only if g is a rotation, i.e., if and only if f(z) = F (cz) for some
c ∈ T. Now apply Proposition 6.1. �

7. Applications to hyperbolic geometry

The hyperbolic metric on D is

ρD(z)|dz| :=
|dz|

1 − |z|2 .

So ρD(z) ≥ 1 for every z ∈ D with equality when z = 0.
The associated hyperbolic distance function is

hD(z, w) := tanh−1

∣∣∣∣ z − w

1 − w̄z

∣∣∣∣ .

The hyperbolic disk with hyperbolic center c and hyperbolic radius R > 0 is

DD(c, R) = {z : hD(z, c) < R}.
The closed hyperbolic disk D̄D(c, R) is defined similarly. For 0 < r < 1 the Eu-
clidean disk rD is the hyperbolic disk DD(0, R), where R = tanh−1 r, or r = tanhR.

A region Ω in C is hyperbolic if C \ Ω contains at least two points. If Ω is a
hyperbolic region and f : D → Ω is an analytic covering, then the density ρΩ of the
hyperbolic metric ρΩ(w)|dw| on Ω is defined so that

(7.1) ρΩ(w)|dw| = ρΩ(f(z))|f ′(z)||dz| = ρD(z)|dz|.
This defines the hyperbolic density ρΩ independent of the covering. Let hΩ be the
associated hyperbolic distance function on Ω. Open and closed hyperbolic disks
in Ω are defined in the standard way. If f : D → Ω is an analytic covering with
f(0) = c and R > 0, then f(DD(0, R)) = DΩ(c, R) with the similar result for closed
hyperbolic disks.
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By Schwarz’s Lemma (Theorem 1.1) and the Monodromy Theorem, the following
monotonicity holds

Ω̃ ⊂ Ω =⇒ ρΩ̃(z) ≥ ρΩ(z) ∀z ∈ Ω̃.

So for z ∈ Ω, by choosing Ω̃ to be the largest Euclidean disk centered at z contained
in Ω, one gets the following upper bound for hyperbolic density:

ρΩ(z) ≤ 1
dist(z, ∂Ω)

.

In [A1973, p. 16], Ahlfors states that it is a much harder problem to find lower
bounds. Theorem 7.1(b) below shows, in particular, that the geometric lower bound
of

(7.2) ρΩ(z) ≥
√

π/ Area(Ω)

holds for every region Ω and every z ∈ Ω.

Theorem 7.1. Suppose Ω is a hyperbolic region. Then for each c ∈ Ω and R > 0,
the function R 	→ (

π tanh2(R)
)−1

AreaDΩ(c, R) is strictly increasing except when
Ω is an Euclidean disk with center c. If Area Ω ≤ π, then

(a) for each c ∈ Ω and all R > 0,

AreaDΩ(c, R) ≤ π tanh2 R

with equality if and only if Ω is an Euclidean disk with center c and radius
1; and

(b) for each c ∈ Ω,
1 ≤ ρΩ(c)

and equality holds if and only if Ω is an Euclidean disk with center c and
radius 1.

Proof. Fix c ∈ Ω and let f : D → Ω be an analytic covering with f(0) = c. Since
f(rD) = DΩ(c, R), where r = tanhR,

AreaDΩ(c, R)
π tanh2 R

=
Area f(rD)

πr2
.

Theorem 1.9 implies that this quotient is strictly increasing unless f is linear, or
equivalently, Ω is a disk with center c.

If AreaΩ ≤ π, then parts (a) and (b) follow from Corollary 1.10; note that
ρΩ(c) = 1/|f ′(0)|. �

Analogous theorems can be formulated for logarithmic capacity and n-diameter.

8. Modulus growth bounds

In view of the bound on the growth of the modulus in Schwarz’s Lemma, it is
natural to ask whether a similar statement holds in the context of ‘diameter’. We
offer the following result.

Theorem 8.1. Suppose f is analytic on the unit disk D and Diam f(D) ≤ 2. Then
for all z ∈ D,

(8.1) |f(z) − f(0)| ≤ |z| 2
1 +

√
1 − |z|2 .
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Moreover, equality holds in (8.1) at some point in D\{0} if and only if f is a linear
fractional transformation of the form

(8.2) f(z) = c
z − b

1 − bz
+ a

for some constants a ∈ C, b ∈ D \ {0} and c ∈ T.

Remark 8.2. In Schwarz’s Lemma, equality in (1.2) at some point in D \ {0} holds
if and only if equality holds at every point z ∈ D. This is not true any more in
Theorem 8.1. Namely, when f is the linear fractional transformation in (8.2), then
equality in (8.1) occurs only for z := 2b/(1 + |b|2).
Remark 8.3. Since in (8.1) the origin does not play a special role, we can rewrite
that inequality more symmetrically as follows:

|f(z) − f(w)| ≤ Diam f(D)
δ

1 +
√

1 − δ2
= Diam f(D) tanh(ρ/2) ∀z, w ∈ D

where δ = δ(z, w) :=
∣∣∣ z−w
1−w̄z

∣∣∣ is the pseudohyperbolic distance between z and w and
ρ = ρ(z, w) := (1/2) log[(1+δ)/(1−δ)] is the hyperbolic distance between z and w.

The preceding inequality can also be rewritten using the well-known identity

1 −
∣∣∣∣ z − w

1 − w̄z

∣∣∣∣
2

=
(1 − |z|2)(1 − |w|2)

|1 − w̄z|2 ,

as

|f(z) − f(w)| ≤ Diam f(D)
|z − w|

|1 − w̄z| + √
(1 − |z|2)(1 − |w|2) .

Proof of Theorem 8.1. Fix d ∈ D such that f(d) �= f(0). Set

g = c1f ◦ T + c2

where T is a linear fractional transformation of D onto D such that T (x) = d,
T (−x) = 0, for some x > 0 and c1, c2 are constants chosen so that g(x) = x and
g(−x) = −x. By elementary algebra

T (z) =
d

|d|
z + x

1 + xz

where x := |d|/(1 +
√

1 − |d|2),

c1 :=
2x

f(d) − f(0)
and c2 := −x

f(d) + f(0)
f(d) − f(0)

.

Then

(8.3) Diam g(D) = |c1|Diam f(D) ≤ 4
|f(d) − f(0)|

|d|
(1 +

√
1 − |d|2) .

We now prove that Diam g(D) ≥ 2, with equality if and only if g(z) ≡ z.
Set h(z) := (g(z) − g(−z))/2. Then h(x) = x and h(−x) = −x. Note also that

h(0) = 0 so that h(z)/z is analytic in the disk and has value 1 at x and hence
by the maximum principle sup

D
|h(z)| = sup

D
|h(z)/z| ≥ 1, with equality only if

h(z) = z for all z ∈ D. Since, by definition of h, Diam g(D) ≥ 2 sup
D
|h|, we see

that Diam g(D) ≥ 2 and then (8.3) gives (8.1) for z = d.
If equality holds in (8.1) at some point in D \ {0}, then that point is an eligible

d for the preceding discussion, and (8.3) shows that Diam g(D) ≤ 2, while we have
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already shown that Diam g(D) ≥ 2. Thus Diam g(D) = 2. Hence supz∈D
|h(z)| = 1

and therefore h(z) ≡ z. Since h is the odd part of g, we have g′(0) = h′(0) = 1.
Thus, by the Landau-Toeplitz Theorem 1.3 applied to g, we find that g(z) ≡ g(0)+z
and thus

f(z) =
1
c1

T−1(z) + f(T (0)).

Moreover, equality at z = d in (8.1) says that |f(d) − f(0)| = 2x, hence |c1| = 1.
Since T is a Möbius transformation of D, namely of the form

T (z) = η
z − ξ

1 − ξz

for some constants ξ ∈ D and η ∈ T, its inverse is also of this form. Therefore, we
conclude that f can be written as in (8.2).

Finally, if f is given by (8.2), then 2b/(1 + |b|2) ∈ D \ {0}, and one checks
that equality is attained in (8.1) when z has this value and for no other value in
D \ {0}. �

9. Higher derivatives

We finish with a result, due to Kalle Poukka in 1907, which is to be compared
with the usual Cauchy estimates that one gets from the maximum modulus. In-
terestingly, Poukka seems to have been the first student of Ernst Lindelöf, who is
often credited with having founded the Finnish school of analysis.

Theorem 9.1 (Poukka [Pou1907]). Suppose f is analytic on D. Then for all
positive integers n we have

(9.1)
|f (n)(0)|

n!
≤ 1

2
Diam f(D).

Moreover, equality holds in (9.1) for some n if and only if f(z) = f(0) + czn for
some constant c of modulus Diam f(D)/2.

Proof (Poukka): Write ck := f (k)(0)/k!, so that f(z) =
∑∞

k=0 ckzk, for every z ∈ D.
Fix n ∈ N. For every z ∈ D,

(9.2) h(z) := f(z) − f(zeiπ/n) =
∞∑

k=1

ck(1 − eiπk/n)zk.

Fix 0 < r < 1 and notice that, by absolute and uniform convergence,

(9.3)
∞∑

k=1

|ck|2|1 − eiπk/n|2r2k =
∫ 2π

0

|h(reiθ)|2 dθ

2π
≤ (Diam f(D))2.

Therefore
|ck(1 − eiπk/n)|rk ≤ Diam f(D)

for every 0 < r < 1 and every k ∈ N. In particular, letting r tend to 1 and then
setting k = n, we get 2|cn| ≤ Diam f(D), which is (9.1).

If equality holds here, then letting r tend to 1 in (9.3), we get that all coefficients
ck(1 − eiπk/n) in (9.2) for k �= n must be 0. Hence, ck = 0 whenever k is not a
multiple of n. Thus, f(z) = g(zn) for some analytic function g on D. Moreover,
g′(0) = cn and Diam g(D) = Diam f(D). So, by Theorem 1.3, g(z) = cz for some
constant c with |c| = Diam g(D), and the result follows. �
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10. Further problems

Here we discuss a couple of problems that are related to these “diameter” ques-
tions.

The first problem arises when trying to estimate the distance of f from its
linearization, f(z)−(f(0)+f ′(0)z), to give a “quantitative” version for the ‘equality’
case in Schwarz’s Lemma (Theorem 1.1). This is done via the so-called Schur
algorithm. As before, one considers the function

g(z) :=
f(z) − f(0)

z

which is analytic in D, satisfies g(0) = f ′(0) and which, by the Maximum Modulus
Theorem, has, say, sup

D
|g| ≤ 1. Now let a := f ′(0) and post-compose g with a

Möbius transformation of D which sends a to 0 to find that
g(z) − a

1 − āg(z)
= zh(z)

for some analytic function h with sup
D
|h| ≤ 1.

Inserting the definition of g in terms of f and solving for f shows that

f(z) − f(0) − az = (1 − |a|2) z2h(z)
1 + āzh(z)

.

Thus, for every 0 < r < 1,

(10.1) max
|z|<r

|f(z) − f(0) − f ′(0)z| ≤ (1 − |f ′(0)|2) r2

1 − |f ′(0)|r
and ‘equality’ holds for at least one such r if and only if h(z) ≡ a/|a| = f ′(0)/|f ′(0)|,
i.e., if and only if

f(z) = z
a

|a|
z + |a|
1 + |a|z + b

identically, for constants a ∈ D, b ∈ C.
In the context of this paper, when f is analytic in D and Diam f(D) ≤ 2, by the

Landau-Toeplitz Theorem 1.3 and a normal-family argument we see that, for every
ε > 0 and every 0 < r < 1, there exists α > 0 such that: |f ′(0)| ≥ 1 − α implies

|f(z) − (f(0) + f ′(0)z)| ≤ ε ∀|z| ≤ r.

However, one could ask for an explicit bound as in (10.1).

Problem 10.1. If f is analytic in D and Diam f(D) ≤ 2, find an explicit (best?)
function φ(r) for 0 ≤ r < 1 so that

|f(z) − (f(0) + f ′(0)z)| ≤ (1 − |f ′(0)|)φ(r) ∀|z| ≤ r.

Another problem can be formulated in view of Section 7. It is known (see the
Corollary to Theorem 3 in [MinW1982]) that if Ω is a bounded convex domain,
then the minimum

(10.2) Λ(Ω) := min
w∈Ω

ρΩ(w)

is attained at a unique point τΩ, which we can call the hyperbolic center of Ω. Also
let us define the hyperbolic radius of Ω to be

Rh(Ω) := sup
w∈Ω

|w − τΩ|.
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Now assume that Diam Ω = 2. Then we know, by the corresponding “diameter”
version of Theorem 7.1, that Λ(Ω) ≥ 1, with equality if and only if Ω is a disk of
radius 1. In particular, if Λ(Ω) = 1, then Rh(Ω) = 1.

Problem 10.2. Given m > 1, find or estimate, in terms of m − 1,

sup
Ω∈Am

Rh(Ω)

where Am is the family of all convex domains Ω with Diam Ω = 2 and Λ(Ω) ≤ m.

More generally, given an analytic function f on D such that Diam f(D) ≤ 2,
define

M(f) := min
w∈D

sup
z∈D

|f(z) − f(w)|
and let wf be a point where M(f) is attained.

Problem 10.3. Fix a < 1. Find or estimate, in terms of 1 − a,

sup
f∈Ba

M(f)

where Ba is the family of all analytic functions f on D with Diam f(D) ≤ 2 and

|f ′(wf )|(1 − |wf |2) ≥ a.

Similar questions can be asked replacing diameter by area or capacity.
Also in this paper we considered analytic maps f of the unit disk D into a region

with bounded area, diameter or capacity, and established analogs of Schwarz’s
Lemma. What about analogs of Schwarz’s Lemma for the ‘dual’ situation of an
analytic map f : Ω → D, where Ω satisfies some geometric restriction?
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Acad. Sci. Paris, 144 (1907), 1203-1206.

[Carl1921] T. Carleman, Zur Theorie der Minimalflächen, Math. Z. 9 (1921), 154–160.
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[Pou1907] K. A. Poukka, Über die größte Schwankung einer analytischen Funktion auf einer
Kreisperipherie, Arch. der Math. und Physik (3) 12 (1907), 251-254.

[Ra1995] T. Ransford, Potential Theory in the Complex Plane, London Math. Soc. Student
Texts 28, Cambridge Univ. Press, Cambridge, 1995. MR1334766 (96e:31001)

[Re1991] R. Remmert, Theory of Complex Functions, Graduate Texts in Math., vol. 122,
Springer-Verlag, 1991. MR1084167 (91m:30001)

Department of Mathematics, Cardwell Hall, Kansas State University, Manhattan,

Kansas 66506

E-mail address: burckel@math.ksu.edu

Department of Mathematics, Box 354350 University of Washington Seattle, Wash-

ington 98195-4350

E-mail address: marshall@math.washington.edu

Department of Mathematical Sciences, University of Cincinnati, P.O. Box 210025,

Cincinnati, Ohio 45221-0025

E-mail address: david.minda@uc.edu

Department of Mathematics, Cardwell Hall, Kansas State University, Manhattan,

Kansas 66506

E-mail address: pietro@math.ksu.edu
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