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THE LOEWNER DIFFERENTIAL EQUATION
AND SLIT MAPPINGS

DONALD E. MARSHALL AND STEFFEN ROHDE

1. Introduction and results

In his study of extremal problems for univalent functions, K. Löwner [11] (who
later changed his name into C. Loewner) introduced the differential equation named
after him. It was a key ingredient in the proof of the Bieberbach conjecture by de
Branges [2]. It was used by L. Carleson and N. Makarov in their investigation of
a process similar to DLA [3]. Recently, O. Schramm [20] found a description of
the scaling limits of some stochastic processes in terms of the Loewner equation
(assuming the validity of some conjectures such as existence of the limits). This led
him to the definition of a new stochastic process, the “Stochastic Loewner Evolu-
tion” (SLE). The SLE has been further explored in the work of Lawler, Schramm
and Werner (see [14] and the references therein) and led to a proof of Mandelbrot’s
conjecture about the Hausdorff dimension of the Brownian frontier. The SLE has
also played a crucial role in S. Smirnov’s [21] recent work on percolation.

Somewhat surprisingly, the geometry of the solutions to the Loewner equation
is not very well understood. This paper addresses the regularity of solutions in the
deterministic setting.

Let Ωt, t0 ≤ t ≤ t1, be a continuously increasing sequence of simply connected
planar domains, and let z0 ∈

⋂
t Ωt. Then there are conformal maps ft : D → Ωt

of the unit disc with ft(0) = z0 and f ′
t(0) > 0. The continuity of the domain

sequence can be expressed by saying that the map t �→ ft is continuous in the
topology of locally uniform convergence. Since f ′

t(0) is increasing in t, we may
assume (by reparametrizing Ωt if necessary) that f ′

t(0) = et for t0 ≤ t ≤ t1.
The family ft, t0 ≤ t ≤ t1, is called a (normalized) Loewner chain. The Loewner
differential equation

(1.1) ∂tf(z, t) = z p(z, t) ∂zf(z, t)

describes the evolution of a (normalized) Loewner chain ft(z), where p = p(z, t) is
analytic in z and has positive real part (see [17]). A particularly important case is
the case of slit domains

(1.2) Ωt = Ω \ γ[t, t1],
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The authors were partially supported by NSF grants DMS-9800464, DMS-9970398, and DMS-

0201435.

c©2005 American Mathematical Society
Reverts to public domain 28 years from publication

763



764 DONALD E. MARSHALL AND STEFFEN ROHDE

where Ω ⊆ C is simply connected and γ parametrizes a simple arc that is contained
in Ω except for one endpoint γ(t1) ∈ ∂Ω. In this case, p has a particularly simple
form and (1.1) becomes

(1.3) ∂tf = z
λ(t) + z

λ(t) − z
∂zf,

where λ(t) = f−1
t (γ(t)) ∈ T = ∂D (see [5], Chapter 3.3). It is known that λ(t) is

continuous, and conversely that (1.3) generates a sequence of increasing domains
whenever λ is continuous. In fact, even (1.1) generates conformal maps onto in-
creasing domains assuming only measurability of p in t; see [17]. The paper [13]
contains a topological characterization of increasing domain families Ωt for which
(1.1) simplifies to (1.3) with continuous λ.

It is known [9] that the domains Ωt obtained from (1.3) are not necessarily slit
domains if λ is only assumed to be continuous. The main result of this paper is a
rather sharp condition on λ that guarantees slit domains.

We will first consider (1.2) with Ω = C, so that t1 = ∞. A quasiarc is the image of
[0,∞) under a quasiconformal homeomorphism of C. Piecewise smooth arcs without
zero angle cusps are quasiarcs, as well as for instance the van Koch snowflake. A
simple geometric characterization of quasiarcs is the Ahlfors three-point condition
(the diameter of any subarc is bounded above by a bounded multiple of the distance
between the endpoints). Denote by Lip( 1

2 ) the space of Hölder continuous functions
λ with exponent 1/2, |λ(s) − λ(t)| ≤ c|s − t|1/2, and let ||λ|| 1

2
denote the smallest

such c.

Theorem 1.1. If γ is a quasiarc, then λ ∈ Lip( 1
2 ). Conversely, there is a constant

C > 0 such that if λ ∈ Lip( 1
2 ) with ||λ|| 1

2
< C, then C \ ft(D) is a quasiarc for all t.

If the assumption ||λ|| 1
2

< C is replaced by the slightly weaker local condition

inf
ε>0

sup
|t−s|<ε

|λ(t) − λ(s)|√
|t − s|

< C,

then C \ ft(D) is still a quasiarc. This follows from Lemma 2.7. The assumption
||λ|| 1

2
< C cannot be omitted: we show that there is a function λ ∈ Lip( 1

2 ) such
that ∂Ωt is not even locally connected (and Ωt ↗ Ω = C).

By means of a simple transformation, the Loewner equation becomes an ODE:
for t ≤ s, set

φs,t = f−1
s ◦ ft.

Then φs,t maps D into D, satisfies φs,t(0) = 0 and φ′
s,t(0) = et−s. By differentiating

the identity fs ◦ φs,t = ft with respect to s, (1.3) becomes

(1.4) ∂sφs,t(z) = −φs,t(z)
λ(s) + φs,t(z)
λ(s) − φs,t(z)

.

Notice that φt,t = id. Fix t and set gs = φt+s,t for 0 ≤ s ≤ s0 := t1 − t, and let
ξ(s) = λ(t + s). Then

(1.5) ∂sgs = −gs
ξ(s) + gs

ξ(s) − gs
for s ∈ [0, s0), g0 = id.

Notice that the solutions to the initial value problem (1.5) are unique, whereas the
solutions to (1.1) and (1.3) are unique only up to post-composition with a conformal
map of

⋃
t ft(D), simply because no initial conditions are imposed (if t1 = ∞, a
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certain terminal condition is automatically satisfied and hence solutions are unique
in this case). Therefore it is more natural to work with (1.5). Theorem 1.1 is a
simple consequence of

Theorem 1.2. Let ξ : [0, s0] → ∂D be continuous and gs the solution to (1.5). If
gs0(D) is a quasislit-disc, then ξ ∈ Lip( 1

2 ). Conversely, if ||ξ|| 1
2

< C, then gs(D) is
a quasislit-disc for all s.

A quasislit-disc is, by definition, the image of a radially slit disc under a qua-
siconformal map fixing D and 0. See Section 2 for basic properties. Theorems 1.1
and 1.2 are quantitative in the sense that the quasiconformal constant K and the
Lip( 1

2 )-norm depend on each other, and K is close to 1 if and only if ||ξ|| 1
2

is close
to 0.

The idea of the proof of Theorem 1.2 is as follows: The Loewner equation can be
viewed as a decomposition of a conformal map f into infinitesimal conformal factors.
This suggests approximating f by a composition of (finitely many) conformal maps.
Given ξ ∈ Lip( 1

2 ), it is not hard to approximate ξ by functions ξ(ε) ∈ Lip( 1
2 ) for

which it is easy to see that the solutions g
(ε)
s generate slits. If ||ξ(ε)|| 1

2
is small,

then the conformal welding in these slits can be shown to be quasisymmetric, by
analyzing (1.5) on T. This easily implies that the slits are quasiconformal slits. By
compactness of the space of quasislit-domains, one obtains quasislits in the limit
ε → 0.

In (1.1)–(1.5), ft and gs are normalized in an interior point. A different important
normalization requires f or g to fix a boundary point. Then it is more convenient
to consider the upper half-plane H instead of D, and to choose ∞ as this boundary
point. The normalization f ′(t) = et is then to be replaced by the hydrodynamic
normalization ft(z) = z − 2t/z + O(1/z2) as z → ∞ (t ≥ 0), and the equation
corresponding to (1.5) is

(1.6) ∂sgs =
2

ξ(s) − gs
for s ∈ [0, s0), g0 = id,

where ξ : [0, s0) → R. See [20] (a derivation of this equation can be found in [13]).
Our Theorems 1.1 and 1.2 remain true in this situation, and the proofs simplify
slightly. There is one significant difference between (1.5) and (1.6). This is apparent
by observing that the condition ξ ∈ Lip( 1

2 ) for maps into T, resp. R, gives the same
local regularity, but not global: the lift of ξ : R → T to R is not necessarily in Lip( 1

2 )
if ξ is. See the comment after the statement of Lemma 2.7.

There are many examples of functions ξ(s) which are not Lip( 1
2 ) but which

generate simple arcs. For instance, it is not hard to see that a disc slit by a smooth
arc that meets T tangentially cannot have ξ ∈ Lip( 1

2 ). A more interesting class of
examples is SLEκ : if 0 ≤ κ ≤ 4, then (1.6) with ξ(t) = B(κt) generates a simple
arc in H almost surely, where B is Brownian motion on R. The same is true for
the disc versions (1.1)–(1.5), with λ(t) = eiB(κt). This is proved in [19]. Previously
O. Schramm [20] has proved that for κ > 4, the Loewner equation almost never
generates arcs in H (the boundary of gs(D) is still locally connected and therefore
a curve, see [19], but these curves are not simple curves in H).

For a slit domain with analytic slit, it is known that the driving term ξ in the
Loewner equation is real analytic. Recently, C. Earle and A. Epstein [4] have given
a new proof of this fact and have also shown that for slits which are Cn, ξ is at
least Cn−1. Using the methods of our paper, one can obtain yet another proof for
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analytic arcs, and also show that Cn curves yield ξ in Cn−1/2. Details of this will
appear elsewhere.

The Loewner equation is related to a certain algorithm for finding the con-
formal map onto a given simply connected domain, discovered independently by
R. Kühnau [10] and the first author. This algorithm has been implemented (see
http:\\www.math.washington.edu\∼marshall) and converges extremely well in
practice, even for conformal maps onto snowflake-like domains. In a forthcoming
paper [16], we will prove convergence of this algorithm.

The paper is organized as follows: Section 2 contains a discussion of quasislit-
discs. In Section 3, we consider the Loewner equation on T and show quasisymmetry
of the welding for a small Lip( 1

2 )-norm. The main theorems are proved in Section
4. In Section 5, a pathological example is constructed.

Acknowledgement. We would like to thank Oded Schramm for numerous
inspiring discussions. We would also like to thank the referee for a careful reading
of the manuscript.

Update. After this paper was submitted, Joan Lind [12] proved that the un-
specified constant C in Theorem 1.1 is C = 4, and that this is best possible.

2. Slit discs

In this section we introduce the concept of quasislit-discs and establish their
basic properties as needed in the proof of the main theorem.

Let Γ ⊂ D be a Jordan arc with endpoints a and b. We are only interested in
arcs that begin in the circle T and are contained in D \ {0}, Γ∩ T = {a}, say. Call
such a domain D \ Γ a slit disc with initial point a and tip b. For every 0 < t < 1
the domain Dt = D \ [t, 1] is a slit disc.

A slit disc D is called a K-quasislit-disc if there is a K-quasiconformal home-
omorphism f of the sphere and 0 < t < 1 such that f(Dt) = D and f(0) = 0.
See the usual references [1] and [15] for background on quasiconformal maps, and
[8], [18] for geometric properties of quasicircles (= images of circles or lines un-
der quasiconformal maps). The requirement f(Dt) = D implies f(D) = D, and
since quasiconformal homeomorphisms of the disc extend to the plane by reflection
(with the same maximal dilatation K), it suffices to consider a K-quasiconformal
homeomorphism f of the disc.

Denote by QSD(K), resp. QSD(K, r), the set of all K-quasislit-discs, resp.
those with conformal radius |g′(0)| = r, where g is a conformal map from D with
g(0) = 0. By the compactness of the family of K-quasiconformal maps fixing D

and 0 we immediately obtain

Lemma 2.1. Equipped with the Carathéodory topology of domain convergence,
QSD(K, r) is compact. �

It is easy to see that the Carathéodory topology coincides with the topology
induced by the Hausdorff distance d(∂D1, ∂D2) of the boundaries of domains of
QSD(K, r). This is not true in the larger space of all slit discs.

We now give an analytic characterization in terms of the conformal welding. The
conformal welding on a slit disc D is defined as follows. Let g : D → D be conformal
with g(0) = 0 and g(1) = b. Then there are two preimages α+, α− ∈ T of the initial
point a. Let I+ be the oriented arc 〈1, α+〉 and I+-the arc < α−, 1 > on T and set
I = I+ ∪ I−. Then the welding homeomorphism φ : I → I is the unique continuous
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function with φ(α+) = α− and

g(x) = g(φ(x)) for all x ∈ I.

Notice that φ(1) = 1.

Lemma 2.2. A slit disc D \ Γ is a quasislit-disc if and only if there is a constant
1 ≤ M < ∞ such that

(2.1) M−1 ≤ |φ(x) − 1|
|x − 1| ≤ M

for all x ∈ I+ and

(2.2) M−1 ≤ |φ(x) − φ(y)|
|φ(y) − φ(z)| ≤ M

whenever x, y, z ∈ I+ (in this order) with |x−y| = |y−z|. Furthermore, the quasislit
constant K of D \ Γ depends on M only, with K → 1 if and only if M → 1.

Proof. Suppose (2.1) and (2.2) hold. Let T : D → D be a quasiconformal map
with T (i) = α+, T (−i) = α−, T (1) = 1 and T−1(0) ∈ (−1, 1). For instance, T
can be constructed as a composition of a quasiconformal map that sends α+ and
α− to symmetric points, followed by a Möbius transformation. It is easy to verify
that ϕ = T−1 ◦ φ ◦ T satisfies (2.1) and (2.2) on 〈1, i〉 and 〈−i, 1〉 (with a possibly
larger constant M ′). We extend ϕ to T by reflection in iR, ϕ(x) = ιϕ(ιx), where
ιx = −x. Next, define ψ : T → T by ψ(x) = x on the upper half-circle 〈1,−1〉, and
ψ(x) = ϕ(x) on 〈−1, 1〉. It is not hard to check that ψ is an orientation-preserving
quasisymmetric homeomorphism, i.e. (2.2) holds for ψ (with a constant M ′′) and
all points x, y, z on T with |x − y| = |y − z|. Furthermore M ′′ is close to 1 if M
is close to 1. Since ψ is quasisymmetric, it has a quasiconformal extension (again
denoted by ψ) to D, and we can choose this extension such that ψ([−1, 1]) = [−1, 1].
It follows that β ≡ ψ−1(T−1(0)) ∈ (−1, 1). Hence there is a unique 0 < t < 1 such
that a conformal map h from D to Dt exists with h(β) = 0, h(i) = h(−i) = 1 and
h(1) = t. Indeed, h is the composition of the maps

1 − z

1 + z
, c

√
z2 + 1 and

1 − z

1 + z
,

where c =
(
( 1−β
1+β )2 + 1

)− 1
2 and t = 1−c

1+c . Set f = g ◦ T ◦ ψ ◦ h−1. Then f is a
K-quasiconformal homeomorphism from Dt onto D \ Γ that extends to a homeo-
morphism of D. Since the interval [t,1] is removable for quasiconformal maps, D \Γ
is a quasislit-disc.

Conversely, if D is a quasislit-disc and f(Dt) = D, consider the conformal maps
h : D → Dt with h(0) = 0, h(1) = t and g : D → D with g(0) = 0, g(1) = b (the
tip of D). Then ψ = g−1 ◦ f ◦ h is a K-quasiconformal self-map of the disc fixing 0
and 1, and therefore extends quasisymmetrically to T. Since φ(x) = ψ(ψ−1(x)) on
I, the lemma follows. �

Notice that the slit of a K-quasislit-disc obviously is a K-quasiarc (i.e., the image
of a line segment under some K-quasiconformal map), whereas the converse is not
true. Here is a geometric characterization.

Lemma 2.3. The slit disc D \ Γ is a quasislit-disc if and only if Γ is a quasiarc
that approaches T nontangentially.
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Proof. If D \ Γ is a quasislit-disc, then Γ is a quasiarc by definition, and the non-
tangential approach follows from the quasi-invariance of the hyperbolic distance.

Conversely, a disc slit by a nontangential quasiarc is a John domain (see [18],
Chapter 5 for the definition), with constant depending on the quasiarc constant and
the nontangential approach only. It follows from the doubling property of harmonic
measure in John domains that (2.1) and (2.2) hold. From Lemma 2.2 we obtain
that D \ Γ is a quasislit-disc. �

Remark. The proof shows that Lemma 2.3 is quantitative in the following sense: if
Γ is contained in the sector {z : −α < arg(1 − az) < α and |a − z| < 1

2}, then the
quasislit constant K of D \ Γ depends on α < π

2 and the quasiarc constant L of Γ
only. One can also show that K → 1 as α → 0 and L → 1. In the other direction,
it is easy to see that α → 0 as K → 1.

Lemma 2.4. Let D = D \ Γ be a K-quasislit-disc with initial point a and tip b.
Let c and d be points on Γ such that the arc Γc of Γ from c to a contains Γd. Let
φc, φd be conformal maps of D onto D \ Γc, D \ Γd fixing 0. Then φ−1

d (φc(D)) is a
K-quasislit-disc, too.

Proof. There exists 0 < t < 1 and a K-quasiconformal self-map f of D fixing 0
such that f(Dt) = D. Set tc = f−1(c) and td = f−1(d) so that t ≤ tc < td ≤ 1. Let
h : D → Dtd

be conformal with h(0) = 0 and h′(0) > 0. Then F = φ−1
d ◦f ◦h is a K-

quasiconformal homeomorphism of D fixing 0 with F (Dh−1(tc)) = φ−1
d (φc(D)). �

Remark. Except for the sharp bound of the quasislit constant, Lemma 2.4 can also
be obtained from the subinvariance principle of [6].

Lemma 2.5. Let D = D\Γ be a K-quasislit-disc with initial point a and tip b. Let
f : D → D be the conformal map with f(0) = 0 and assume that r := f ′(0) > 1/2.
Then

(2.3) |f−1(b) − a| ≤ C
√

1 − r,

where C depends continuously on K with C(1) = 0.

Proof. Set A = f−1(Γ). We are first going to show that

(2.4) diam A � diam Γ �
√

1 − r.

Let Γ∗ denote the reflection of Γ in T and set B = Γ∪Γ∗. Extend f by reflection
in T to a conformal map f : Ĉ \ A → Ĉ \ B. With the usual notation ∆ = Ĉ \ D,

consider the conformal maps φ : ∆ → Ĉ \ A and ψ : ∆ → Ĉ \ B with positive
derivative at ∞. The derivatives are capA and capB = (1/r) capA, where cap
denotes logarithmic capacity ([7], page 74). Since capX � diam X for connected
sets X, we obtain

diam A � capA = r capB � diam B � diam Γ.

Note also that diam Γ � 1 − dist (0, Γ) by Lemma 2.3. Since Γ is a Jordan arc, f
is continuous on D by the Continuity Theorem ([18], page 18). Moreover |f | = 1
on ∂D \ A and thus

log
1

f ′(0)
=

∫
A

log
∣∣∣∣ eiθ

f(eiθ)

∣∣∣∣ dθ

2π
≤ |A|

2π
log

1
dist (0, Γ)

,
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and we obtain

1 − r ≤ C
|A|
2π

diam Γ � (diam A)2.

It remains to prove diam A ≤ C
√

1 − r. To this end, let A′ = f−1(B(b, 1−|b|
2 )).

Then |f | ≤ (1 + |b|)/2 on A′. Since 1 − |b| � diam Γ, we obtain

log
1

f ′(0)
≥ |A′|

2π
log

2
1 + |b| � |A′|(1 − |b|) � |A′|diam Γ.

The doubling property of harmonic measure in John domains implies |A′| � |A|,
and we conclude that diam A ≤ C

√
1 − r, finishing the proof of (2.4).

Since ψ = f ◦ φ and f(0) = 0, we have

z0 := φ−1(0) = ψ−1(0).

Now φ̃ = (φ − f−1(b))/ capA and ψ̃ = (ψ − a)/ capB are normalized univalent
maps in ∆ that omit the value 0. Since diam Ĉ\g(∆) ≤ 4 for normalized univalent
maps g, the functions φ̃(z)−z and ψ̃(z)−z are analytic in ∆ with boundary values
of absolute value bounded above by 5. The maximum principle yields

|z0 +
f−1(b)
capA

| ≤ 5 and |z0 +
a

capB
| ≤ 5.

Hence

|f
−1(b)
capA

− a

capB
| ≤ 10,

and (2.3) follows since |f−1(b)| = |a| = 1.
The claim C(1) = 0 can be proved by a normal families argument: let Dn =

D\Γn be a sequence of Kn-quasislit-discs and Kn → 1. We may assume that an = 1.
Then the An (resp. Bn) “converge” (after rescaling) to a horizontal (resp. vertical)
line segment. Therefore ψ̃n(z) → z+1/z and φ̃n(z) → z−1/z. Since zn = φ−1

n (0) =
ψ−1

n (0) → ∞, it follows that ψ̃n(zn)− φ̃n(zn) → 0 and |f−1
n (bn)− an| = o( capAn)

follows easily. �

The proof of the Hölder continuity of the Loewner parameter for quasislit-discs
is an immediate consequence of Lemmas 2.4 and 2.5 and is explained in Section 4.
For the converse, we need to construct quasislit-discs with prescribed a, f−1(b) and
f ′(0). That this is possible is the content of the next lemma.

Lemma 2.6. Given a, a′ ∈ T and 0 < r < 1, there is a slit disc D = Da,a′,r with
initial point a and tip b such that the conformal map f : D → D with f(0) = 0
satisfies

f ′(0) = r and f(a′) = b.

Moreover, for r ≥ 1/2, Da,a′,r can be chosen as a K-quasislit-disc with

K ≤ C(
|f−1(b) − a|√

1 − r
)

where C : [0,∞) → [1,∞) is continuous with C(0) = 1.

Proof. Replacing f(z) by af(a′z) we see that it suffices to construct for each w ∈
D \ {0} a conformal map f to a slit disc with initial point 1 such that 1 maps to
the tip and f(0) = 0, f ′(0) = w hold.
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b

b′ b′′

1
2 1− 1

C

Γb

Figure 2.1. The region d < 1 − |b| and a slit Γb

Define the canonical slits Sb from points b ∈ D \ [−1, 0] to 1 as follows: denoting
by T (z) = (1 − z)/(1 + z) the conformal map from D to the right half-plane, then

Sb = T−1[0, T (b)].

Construct a family Db = D \ Γb of slit discs with endpoint b ∈ D \ {0}, together
with the conformal maps fb from D to Db normalized by fb(0) = 0, fb(1) = b, with
the following properties:

(1) The function m(b) = f ′
b(0) has a continuous extension to D, with m(0) = 0

and m|T = identity.
(2) For b /∈ [−1, 0], Γb has initial point 1.
(3) For |b − 1| < 1/2, Γb = Sb.

A particular family with these properties is constructed as follows (see Figure 2.1).
For |b − 1| < 1/2 we have to set Γb = Sb. For |b − 1| ≥ 1/2 but b /∈ [−1, 0], let d
be the distance from b to [−1, 0]. If d < 1 − |b|, set b′ = b/(d + |b|) and let Γb be
composed of the line segment [b, b′], the shorter arc of the circle C = {|z| = |b′|}
from b′ to the intersection b′′ of C with the circle {|z−1| = 1/2}, and the canonical
slit from Sb′′ . If d ≥ 1−|b|, Γb is composed of two arcs only, namely the circular arc
of C = {|z| = |b|} from b to the intersection b′′ of C with the circle {|z − 1| = 1/2},
and Sb′′ . Finally set Γb = [−1, b] for b ∈ [−1, 0]. Then (2) and (3) are trivially
satisfied, and (1) is an exercise in Carathéodory kernel convergence.

By topology, m : D → D is surjective and the existence claim of the lemma
follows for w /∈ [−1, 0]. For the general case, repeat the above construction with an
exceptional line segment [0, i] instead of [-1,0], say.

The estimate of the lemma follows from the fact that |f−1(b)−a|√
1−r

is small only if
|b−1| < 1/2, and that the ratio is close to zero if and only if b is close to [1/2, 1]. �

Finally we will prove a partial converse of Lemma 2.4. This is useful for reducing
the proof of Theorem 1.2 to a bounded time interval (s0 = 1, say). If Di, 1 ≤ i ≤ n,
are slit discs with initial points ai and tips bi define the conformal concatenation

D1 ∗ D2 ∗ ... ∗ Dn = gn ◦ ... ◦ g2 ◦ g1(D),

where gi : D → Di are conformal maps such that gi(ai−1) = bi and gi(0) = 0. It is a
slit disc too. The concatenation of quasislit-discs is a quasislit-disc, with constant
depending on the constants of Di and on n. The next lemma says that if the
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conformal radii |g′i(0)| are bounded away from 1, the constant of the concatenation
can be bounded independently of n.

Lemma 2.7. If Di are K-quasislit-discs and |g′i(0)| ≤ 1− ε for all 1 ≤ i ≤ n, then
D1 ∗ ...∗Dn is a K ′-quasislit-disc with K ′ depending on ε and K only, and K ′ → 1
as K → 1 with ε fixed.

It is worthwhile to mention that the corresponding statement is not true for
quasislit-planes if concatenation is defined using conformal maps with the hydrody-
namic normalization instead of normalization in an interior point. This explains a
difference between the “radial Loewner equation” (1.3) and the “chordal Loewner
equation” (1.6) mentioned in the introduction: whereas the function λ(t) = eit

produces quasislit-discs with bounded K (a logarithmic spiral), its lift ξ(t) = t to
R does not. The reason for this difference is that 0 is a hyperbolic (attractive)
fixpoint for gi, whereas ∞ is parabolic for conformal maps of H with hydrodynamic
normalization.

Proof. We may assume that ε is sufficiently small and all Di have conformal radius
∈ [1−2ε, 1−ε] (write gi as a composition of quasislit-maps, using Lemma 2.4). Let
Γ = D \ (D1 ∗ D2 ∗ ... ∗ Dn). Set γj = D \ Dj , Γj = gn ◦ ... ◦ gj+1(γj) and Γn = γn

so that Γ =
⋃n

j=1 Γj . There are r0 < 1, r1 < 1 (depending on ε on K) such that
gj+1(γj) ⊂ D(0, r0) and |gj(z)| ≤ r1|z| on D(0, r0). Hence there is an integer k0

such that

(2.5) Γj ⊂ B(0,
1
2
dist (Γj+k, 0))

for all k ≥ k0 and all j ≤ n−k. We may assume that ε is small enough to guarantee

(2.6) diam Γj ≤ 1
4
dist (Γj , 0).

To prove the lemma if n is bounded is easy using compactness. Hence we may use
the lemma for k0 and assume n > k0. Then

(2.7) Γj ∪ ... ∪ Γj+k0−1 is a quasiarc for all j

with constant depending on K and ε. To see this, first apply the lemma to Dj ∗
Dj+1 ∗ ... ∗ Dj+k0−1 to obtain a quasislit-disc, then apply gj+k0−1 which changes
the constant only by a bounded amount, and finally apply gn ◦ ... ◦ gj+k0 , using the
elementary fact that every conformal map g in D has a K(r0)-qc extension from
D(0, r0) to C. An explicit bound K(r0) ≤ (1 + r0)/(1 − r0) follows from the λ-
Lemma (see [18], Chapter 5.6) applied to the holomorphic motion (z, λ) �→ g(λz)/λ
and setting λ = r0.

It is routine to check that every arc Γ satisfying (2.5), (2.6) and (2.7) also satisfies
the Ahlfors three point property, hence is a quasiarc. It also follows that the set
Γ ∪ {0} has the three point property, and from (2.7) it follows that Γ meets T

nontangentially. This implies that D \ Γ is a K ′-quasislit-disc.
To prove that K ′ → 1 as K → 1 is easy (using compactness) for each fixed n.

To prove independence of n goes along the same lines as the above proof. We omit
the details. �
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3. The Loewner equation and conformal welding

Let ξ : [0, s0] → T be continuous and let gs be the solution to (1.5),

(3.1) ∂sgs(z) = −gs(z)
ξ(s) + gs(z)
ξ(s) − gs(z)

, g0(z) = z.

There is no loss of generality in assuming ξ(0) = 1. For ease of notation, extend ξ to
[0,∞) by ξ(s) ≡ ξ(s0) for s > s0. Notice that g′s(0) = e−s. First let us assume that
gs0(D) = D\Γs0 is a slit disc. Then gs(D) = D\Γs is a slit disc with initial point ξ(s)
for all s ∈ [0, s0]. By Schwarz reflection, gs is a conformal map of Ĉ \ g−1

s (Γs) onto
Ĉ \ (Γs ∪Γ∗

s), where * denotes reflection in T. Furthermore, (3.1) holds throughout
C \ g−1

s (Γs). Roughly speaking, the slit Γs0 is formed as follows. Points on T move
along T towards the singularity ξ(s) according to (3.1), until they actually meet
the singularity. At this time, they leave the circle and move into D. Points hit the
singularity pairwise (from both sides of ξ(s)); hence points on T are identified under
the welding homeomorphism if and only if they hit the singularity at the same time
and before time s0. More formally, for z ∈ T denote

(3.2) T (z) = sup{s > 0 : gt(z) �= ξ(t) for all t ∈ [0, s]}.

If T (z) < ∞ we have gT (z)(z) = ξ(T (z)), and we could have defined T (z) by setting
T (z) = s for both preimages g−1

s (ξ(s)).
As in Section 2, set I = g−1

s0
(Γs0) ⊂ T and consider the welding φ : I → I that

interchanges the endpoints of I and satisfies

gs0(x) = gs0(φ(x)) for all x ∈ I;

in particular φ(1) = 1. For z ∈ I we then have

(3.3) T (z) = T (z′) if and only if φ(z) = z′ or z = z′.

In the special case ξ(t) = ξ0(t) ≡ 1, calculation shows

gt(z) = et
(
1 + z (2 − 2e−t + z) − (1 + z)

√
1 + z(2 − 4e−t + z)

)
/(2z)

so that
g−1

t (1) = 2e−t − 1 ± i2e−t
√

et − 1

and

(3.4) T0(eiϕ) = − log
1 + cosϕ

2
.

For later use, write
G(t, x) = arg gt(eix).

Now let us drop the assumption of gs0(D) being a slit disc. Then we can still
define T (z) by (3.2), and we would like to show that under the assumption of ||ξ|| 1

2

being small, pairs of points z, z′ hit the singularity in finite time.

Lemma 3.1. There is a constant C0 such that if ||ξ|| 1
2

< C0, then

C−1 ≤ T (z)
T0(z)

≤ C

for all z ∈ T with �z > 0, where C = C(||ξ|| 1
2
) → 1 as ||ξ|| 1

2
→ 0.
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Proof. The idea is quite simple and best explained for the half-plane version (1.6),
∂sgs(x) = 2/(ξ(s) − gs(x)): if ξ(0) = 0, x > 0 and s = εx2 for some small fixed ε,
then |ξ(t)| < x

√
ε||ξ|| 1

2
for t ≤ s so that gs(x)− ξ(s) ∼ x− 2s/x− ξ(s) ∼ (1−C ′)x,

so that gs − ξ made a definite advance towards 0. Repeating this argument one can
estimate the time T for which gs − ξ = 0. This idea can easily be made precise, but
we need some notation.

Fix z = eiϕ0 with 0 < ϕ0 ≤ π/2 and set ϕ(s) = arg gs(z) = −i log gs(z), so
ϕ(0) = ϕ0. Writing ξ(s) = eiψ(s) with ψ(0) = 0 we have

(3.5) ϕ′(s) = −i
∂sgs(z)
gs(z)

= i
ξ(s) + gs(z)
ξ(s) − gs(z)

= − cot
ϕ(s) − ψ(s)

2

and in particular (the case ψ ≡ 0)

(3.6) ∂sG(s, τ) = − cot
G(s, τ)

2
.

Define for 0 < ϕ1 < ϕ0,

(3.7) T (ϕ0, ϕ1) = inf{t : ϕ(t) − ψ(t) = ϕ1},
and for 0 < ϕ1 < ϕ2 ≤ π/2,

T0(ϕ2, ϕ1) = inf{t : G(t, ϕ2) = ϕ1} = − log
1 + cosϕ2

2
+ log

1 + cosϕ1

2
.

We claim that there is a universal constant ε > 0 and C = C(||ξ|| 1
2
) with C(t) → 1

as t → 0, such that

(3.8)
1
C

≤ T0(ϕ0, (1 − ε)ϕ0)
T (ϕ0, (1 − ε)ϕ0)

≤ C.

Repeated application of this estimate and summation yields the lemma.
To prove the estimate, fix a small constant ε and set

σ := T0(ϕ0, (1 − ε)ϕ0) ≤ Cεϕ2
0,

where we have used (3.4). Then |ψ(s)| ≤ δ :=
√

σ||ξ|| 1
2

= o(ϕ0) for 0 ≤ s ≤ σ,

where the o(ϕ0) refers to ||ξ|| 1
2
→ 0. From (3.5) and (3.6) we get

− cot
ϕ(s) − δ

2
≤ ϕ′(s) ≤ − cot

ϕ(s) + δ

2
, ∂sG(s, ϕ0 ± δ) = − cot

G(s, ϕ0 ± δ)
2

and obtain
G(s, ϕ0 − δ) + δ ≤ ϕ(s) ≤ G(s, ϕ0 + δ) − δ.

Using |∂xG(σ, x)| < C1 for σ < C2x
2 we obtain

ϕ(σ)−ψ(σ) ≤ G(σ, ϕ0 + δ) ≤ G(σ, ϕ0) + C1δ = (1− ε)ϕ0 + C1δ = (1− ε + o(1))ϕ0

as ||ξ|| 1
2
→ 0. The lower bound ϕ(σ) − ψ(σ) ≥ (1 − ε − o(1))ϕ0 is obtained in the

same way, and (3.8) and the lemma follow easily. �
Lemma 3.2. There is a constant C0 such that if ||ξ|| 1

2
< C0, z1, z2, z3 ∈ I+∩

{�z > 0} and
|z1 − z2| = |z2 − z3|,

then
1
C

≤ |φ(z1) − φ(z2)|
|φ(z2) − φ(z3)|

≤ C

where C → 1 as ||ξ|| 1
2
→ 0.
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Proof. Write zj = eiϕj , gs(zj) = eiϕj(s) and ξ(t) = eiψ(t). After relabeling we may
assume 0 < ϕ1 < ϕ2 < ϕ3. If ϕ3 − ϕ1 ≥ ϕ1, then the lemma follows from Lemma
3.1 and (3.4) since T (zj) = T (φ(zj)) and since we may assume that ||ξ|| 1

2
is close

to zero. Hence we may assume ϕ3 − ϕ1 < ϕ1.
Since (ϕ1(t) − ψ(t))/(ϕ3(t) − ϕ1(t)) → 0 as t → T (z1), there is T such that

ϕ1(T ) − ψ(T ) = ϕ3(T ) − ϕ1(T ). Set

q(t) =
ϕ3(t) − ϕ1(t)
ϕ2(t) − ϕ1(t)

.

We claim that q(t) is bounded for 0 ≤ t ≤ T. In fact, we will prove that q(t)/q(0)
is bounded for 0 ≤ t ≤ T whenever 0 < ϕ1 < ϕ2 < ϕ3 and ϕ3 − ϕ1 < ϕ1, without
assuming that ϕ3 − ϕ2 = ϕ2 − ϕ1 : set

dj(t) = ϕj(t) − ψ(t) > 0 and δ(t) = ϕ3(t) − ϕ1(t) > 0.

From (3.5) and d1(t) < d3(t) ≤ 2d1(t) for 0 ≤ t ≤ T we have

∂tδ =
sin(ϕ3 − ϕ1)/2

sin(d3/2) sin(d1/2)
� ϕ3 − ϕ1

d2
1

and

∂t log q =
1

sin(d1/2)

(
sin(ϕ3 − ϕ1)/2

(ϕ3 − ϕ1) sin(d3/2)
− sin(ϕ2 − ϕ1)/2

(ϕ2 − ϕ1) sin(d2/2)

)

� ϕ3 − ϕ2

d1d2d3
+ O(1),

again using d3(t) ≤ 2d1(t).
Since ∂tδ > 0 we have ϕ3(t) − ϕ2(t) < δ(t) < δ(T ) = d1(T ), and we obtain

|∂t log q(t)| ≤ Cd1(T )/d1(t)3 + O(1).

From Lemma 3.1 and (3.4) we know that T (eiϕ) � ϕ2; hence T ≤ C. Write T (z) =
s + T̃s(gs(z)) with T̃s being the time where the image of gs(z) under the Loewner
flow associated with the function t �→ ξ(t + s) hits the singularity ξ(t + s). Lemma
3.1 yields T̃s(eiϕ) � (ϕ − ψ(s))2, and we obtain

d1(s)2 � T̃s(gs(z1)) = T (z1) − s = T + T̃T (gT (z1)) − s ≥ T − s + Cd1(T )2.

Thus

log q(T )/q(0) ≤ C

∫ T

0

(
d1(T )
d1(t)3

+ O(1))dt

≤ Cd1(T )
∫ ∞

Cd1(T )2
s−

3
2 ds + O(1) = O(1).

Similarly one can prove that (ϕ3(t) − ϕ1(t))/(ϕ3(t) − ϕ2(t)) is bounded.
To finish the proof of the lemma, we can argue as in the case ϕ3 − ϕ1 ≥ ϕ1 to

obtain that |(gT (φ(z1))−gT (φ(z2)))/(gT (φ(z2))−gT (φ(z3)))| is bounded above and
below, and then use the boundedness of the quotient (now running the equation
backwards from time T to 0) to conclude that |(φ(z1) − φ(z2))/(φ(z2) − φ(z3))| is
bounded above and below. �
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4. Proof of the theorems

In the introduction we have described how to pass from a Loewner chain ft

associated with a slit domain to the equation (1.5). This can be reversed: If gs

solves (1.5), 0 ≤ s ≤ s0, then

(4.1) ft = gs0 ◦ g−1
s0+t, −s0 ≤ t ≤ 0

is a Loewner chain (more precisely, ft has an analytic extension to D that constitutes
a Loewner chain) satisfying (1.3), and f−s0 = gs0 , f0 = id, and λ(t) = ξ(s0 + t).
This follows from observing that all ft are well-defined on some subdomain of D,
that (1.3) holds there because of (1.5), and that (1.3) has analytic solutions in all
of D. See ([17], Theorem 6.2). Set

φs,t = f−1
s ◦ ft.

For −s0 = t0 < t1 < ... < tn = 0 we have

gs0 = f−s0 = φ(n) ◦ φ(n−1) ◦ ... ◦ φ(1), φ(j) = φtj ,tj−1 .

The φ(j) are the (unique) solutions to

(4.2) ∂sφ
(j)
s (z) = −φ(j)

s (z)
λj(s) + φ

(j)
s (z)

λj(s) − φ
(j)
s (z)

, λj(s) = λ(tj−1 + s), φ
(j)
0 = id

with 0 ≤ s ≤ tj − tj−1. Conversely, if solutions φ(j) to (4.2) are given with λj(tj −
tj−1) = λj−1(0), then the solutions f−s0 resp. gs0 to (1.3) resp. (1.5) are just
φ(n) ◦ φ(n−1) ◦ ... ◦ φ(1). In particular, if all φ(j) map to slit discs, then ft and gs

map to slit discs.

Proof of Theorem 1.2. Let us first assume that gs0(D) = D\Γ is a K-quasislit-disc.
Consider the Loewner chain (4.1) described above. By Lemma 2.4, f = f−1

s ◦ ft =
gs+s0 ◦g−1

t+s0
maps onto a K -quasislit-disc. Since the initial point of f(D) is a = ξ(s)

and the tip is b = f(ξ(t)), we have

|ξ(t) − ξ(s)| ≤ C
√

1 − et−s ≤ C
√

s − t

by Lemma 2.5, which proves ξ ∈ Lip( 1
2 ).

Now let ξ : [0, s0) → T with small ||ξ|| 1
2

be given. We will first assume s0 ≤ σ0

where σ0 is small enough to ensure that T (z) > σ0 for |z| = 1,�z < 0 (see Lemma
3.1). In order to approximate ξ by functions ξn ∈ Lip( 1

2 ), set

tj =
j

n
s0, ξj = ξ(tj), r = e−

s0
n

for 0 ≤ j ≤ n, and let
Dj = Dξj+1,ξj ,r

be the slit disc provided by Lemma 2.6. Thus the normalized conformal map
φ(j) : D → Dj maps ξj to the tip of Dj , and ξj+1 is the base. Let λj : [0, s0

n ] → T

be the Loewner parameter of Dj (i.e., the function obtained from (1.3) for Ω = Dj).
Then λj(0) = ξj , λj( s0

n ) = ξj+1 and ||λj || 1
2
≤ C, where C = C(||ξ|| 1

2
) is a constant

depending only on ||ξ|| 1
2
. The latter follows from Dj being a quasislit-disc by

Lemma 2.6, combined with the already proven part of the theorem. Notice that
C(t) → 0 as t → 0.

As explained above, the composition

(4.3) g(n)
s0

= φ(n−1) ◦ ... ◦ φ(0)
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is the solution to (1.3) with parameter ξn : [0, s0] → T given by

ξn|[tj ,tj+1](t) = λj(t − tj).

It follows that
||ξn|| 1

2
≤ 2C(||ξ|| 1

2
) + ||ξ|| 1

2
,

and the right-hand side is small if ||ξ|| 1
2

is small.

From Lemmas 2.2, 3.1 and 3.2 it follows that D(n) = g
(n)
s0 (D) is a quasislit-disc.

Indeed, by the assumption s0 ≤ σ0 we have I+ ⊂ {Re z > 0}. Hence (2.1) follows
from Lemma 2.2, (3.4), and Lemma 3.1, whereas (2.2) follows from Lemma 3.2.
Finally, the case s0 > σ0 follows from Lemma 2.7.

By Lemma 2.1, g
(n)
s (D) converges to a conformal map gs onto a quasislit-disc.

Since ξn converges to ξ, passing to the limit in (1.5) on D, we conclude that gs must
also satisfy (1.5) and Theorem 1.2 follows. �

Proof of Theorem 1.1. If γ is a quasiarc, then the proof of Lemma 2.4 shows that
φs,t = f−1

s ◦ ft maps D onto quasislit-discs, and λ ∈ Lip( 1
2 ) follows from Lemma

2.5.
Conversely, if ||λ|| 1

2
is small, then the solutions gs of (1.3) with ξ(s) = λ(s) map

to quasislits by Theorem 1.2. It is well known that esgs → f0 locally uniformly in D

as s → ∞ (see [17], Theorem 6.3). By compactness of the space of quasislit-planes
with conformal radius 1, the theorem follows. �

5. Examples

We want to construct a connected unbounded set that is not locally connected
such that the driving term λ(t) in the Loewner equation is in Lip( 1

2 ). To this end,
let γ1 be a logarithmic spiral; for instance, γ1(t) = tei log |t|,−1 ≤ t ≤ 1. Let γ2 be a
smooth curve joining one endpoint of γ1 to ∞ within C\γ1. Let F : C\{0} → C\D

be the homeomorphism F (z) = (|z|+ 1)z/|z|. Then Γ = F (γ1 ∪ γ2) has the desired
properties: clearly Γ is not locally connected. Fix a point z0 ∈ C \ (Γ ∪ D). Then
C \ Γ can be embedded in a Loewner chain (with respect to z0) as follows: fix a
parametrization γ of γ1 ∪ γ2 and set t0 = γ−1(0). The domains D̂t = C \ γ[t,∞)
are continuously increasing. Set Dt = F (D̂t) for t ≤ t0 and Dt = F (D̂t) ∪ D for
t > t0. It is easy to check that for s < t, there is a crosscut cs,t of Dt separating z0

from Dt \ Ds with diam cs,t → 0 as s → t. Thus the condition of ([13], Theorem
2.6) is satisfied and Dt together with the conformal maps ft : D → Dt, ft(0) = z0

form a Loewner chain satisfying (1.3) with continuous λ (assuming that (Dt) is
parametrized such that f ′

t(0) = et). In order to show λ ∈ Lip( 1
2 ), it suffices to show

(5.1) |λ(t) − λ(t0)| ≤ C|t − t0|
1
2 .

Assume t < t0 (the proof for t > t0 is similar). Define a sequence Tn ↗ t0
inductively by choosing T0 < t0 and setting

Tn+1 = inf{t > Tn : |Γ(t) − Γ(Tn)| = |Γ(Tn)| − 1}.
Since consecutive turns of the logarithmic spiral γ1 have geometrically decreasing
distances from 0, we have that |Γ(Tn+1) − Γ(Tn)| is comparable to the distance of
Γ(Tn) to the “previous turn” of Γ. Then it is easy to see that Γn = Γ[Tn, Tn+1] has
harmonic measure

ωn = ω(z0, Γn, DTn
)
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λ(t) = sin(8πt)
λ(t) = random walk

Figure 5.1.

satisfying

(5.2) ωn+k ≤ C1e
−C2kωn for all k ≥ 1.

Furthermore, f−1
Tn

(Γn) is a smooth quasislit (with uniformly bounded K). From
(2.4) we obtain

|λ(Tn+1) − λ(Tn)| ≤ Cdiam f−1
Tn

(Γn) ≤ Cωn.

By Lemma 2.5,
Tn+1 − Tn ≥ Cω2

n,

and the claim (5.1) follows from (5.2) by summation. �
Finally we would like to mention that our proof of Theorem 1.2 leads to a simple

algorithm for approximating the solutions of (1.3): The compositions (4.3) are
converging to gs as proved above, so the problem reduces to finding the maps φ(j).
Using the conformal maps z �→ (z + a)a(z + 1 − a)1−a of the upper half-plane to
the half-plane slit by a line segment of angle aπ, this problem essentially reduces
to finding the exponents a. To do this numerically is not hard. This algorithm
has been implemented by our undergraduate research assistants Tarn Adams, Gary
Look and Julie Rowlett, whom we would like to thank for their effort. The two
pictures in Figure 5.1 were produced with this algorithm. In the second picture,
λ(t) is the random walk

λ(
j

n
) = exp(i

√
2
n

j∑
k=0

±1), 0 ≤ j ≤ n.

Since this approximates B(2t), this should (and does) look like a “typical” path of
the Loop Erased Random Walk by [20].
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