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Abstract. We give an explicit analytic conversion between the chordal and radial versions of

Loewner’s differential equation, allowing the derivation of one from the other. This also allows

us to translate some results known in one regime to results not previously known in the other.

1. Introduction.

Loewner’s differential equation has been instrumental in solving important problems in classical

function theory. More recently a variant, called the chordal Loewner equation, has arisen as a

fundamental tool in studying random processes in the plane. The classical, or radial, version

parameterizes a curve in the disk by minus the logarithm of the conformal radius, whereas the

chordal version uses a different parameterization of curves in the upper half plane called the half

plane capacity. Of course the disk and the half plane are conformally equivalent, but there is a

fundamental difference between the radial and chordal equations. If we let the half plane parameter

tend to ∞, then the associated curve tends to ∞, which is a boundary point of H = {z : Imz > 0},
whereas when the logarithm of the conformal radius tends to ∞, the associated curve in D = {z :

|z| < 1} tends to the origin, an interior point of D. Another aspect of this difficulty is that under

the chordal flow, no point in the upper half plane can be fixed. For this reason some have suggested

that the two regimes are quite different and could not be directly related. In [BCD], for example,

a more general context is given which contains both the radial and chordal equations as special

cases, but an explicit analytic relation between the two regimes does not seem to follow from their

work.

Several results have been proved in one setting and the analogous result obtained in the other

setting by imitating the main ideas of the proof. For example, a sufficient condition [MR] for the

radial Loewner equation to have a trace which is a quasiarc is that the local Lip-12 semi-norm of its

driving term is small. The easier chordal case also follows from similar ideas, as indicated in [MR].

Simple Examples in both the disk and the half plane show that norm equal to 4 is not sufficient.

Lind [L] proved that any norm smaller than 4 suffices in the half plane setting. Prohkonov and

Vasiliev [PV] indicated how to prove the same result in the disk setting using Lind’s ideas. The
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local Lip-12 semi-norm has also been used in [LMR] to give a determistic version of the fundamental

result of [RS] describing the nature of the SLEκ curves for various ranges of the parameter κ.

Other results concerning the smoothness of Loewner curves are known in one setting but not

the other. Earle and Epstein [EE] worked in the radial setting and proved that if the curve is Cn

then the driving term is Cn−1, n = 1, 2, . . .. They also proved that if the curve is analytic, then

so is the driving term. Aleksandrov [Ale] proved in the radial case that if the driving term has

bounded first derivative then the curve is C1. Wong [CW] proved in the chordal case that if the

driving term is Cβ− 1

2 as a function of half-plane capacity then the curve is Cβ for 1 < β < 2 and

2 < β < 5
2 . The present short note is motivated by Wong’s question of whether the same result

holds in the radial case. His techniques are quite involved, and it does not appear to be simple to

just translate the ideas to the disk.

In the second section we give an explicit change of variables in the domain and “time” vari-

ables to translate between the chordal and radial versions. We show how to derive one version

of Loewner’s equation from the other and show that the associated driving terms have the same

smoothness in terms of Cβ (Corollary 3) and in terms of the local Lip-12 (semi) norms (Corollary

4). In the third section attempt to resolve the apparent difficulty mentioned above about curves

tending to boundary points and curves tending to interior points. We give a different derivation

by viewing the point at ∞ in the chordal case as an interior point for the complement of the union

of the curve and its reflection about the real line, and then derive the chordal equation from the

slight extension of the classical radial case to the radial case for two symmetric curves. The discus-

sion here will be limited to domains slit by Jordan arcs. The reader can easily extend the proofs,

virtually unchanged, to more general hulls.

2. A change of variables.

Suppose γ is a Jordan arc in H ∪ {0} beginning at γ(0) ∈ R, where H = {z : Imz > 0}
is the upper half plane. Fix z0 ∈ H \ γ, let τ = (z − z0)/(z − z0), a conformal map of H onto

D = {ζ : |ζ| < 1}, and let

α = τ(γ). (1)

Then α ⊂ D with α(0) = z0/z0 ∈ ∂D and 1 = τ(∞) /∈ α. By the Riemann mapping theorem, there

is a unique conformal map F = F (s, ζ) of D onto D \ α[0, s] such that F (0) = 0 and F ′(0) > 0. By

Schwarz’s lemma, we may choose the parameterization of α so that

F (ζ) = F (s, ζ) = e−sζ +O(ζ2).
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The quantity e−s is called the conformal radius of F (s,D).

By Caratheodory’s Theorem, F extends to be continuous on the closed unit disk with F (I) =

α[0, s] and F (∂D \ I) = ∂D \ α(0), for some (closed) circular arc I = I(s) ⊂ ∂D. By the Schwarz

Reflection Principle, F extends to be a conformal map of C∗ \ I onto C
∗ \ (α[0, s]∪α∗[0, s]), where

C
∗ is the extended plane and α∗ = {ζ : 1/ζ ∈ α} is the reflection of α about the unit circle. Then

by Loewner’s equation (see e.g. Ahlfors, Conformal Invariants) the function F satisfies

Ḟ

F ′
= ζ

(

ζ + ω

ζ − ω

)

, (R − LDE)

where Ḟ = dF
ds

, F ′ = dF
dζ

and ω = ω(s) is a unimodular continuous function of s given by F (ω(s)) =

α(s). By our choice of τ , 1 /∈ α, so that |F | = 1 in a neighborhood of A = F−1(1). By the Schwarz

Reflection Principle, F is analytic in a neighborhood of A and F ′(A) 6= 0.

Let σ1 = A(z − i)/(z + i) be the conformal map of H onto D with σ1(∞) = A and σ1(i) = 0.

Then

f1 = τ−1 ◦ F ◦ σ1 = Dz +C +O

(

1

z

)

is a conformal map on H, indeed on all of C \ σ−1
1 (I). By equating coefficients in the expansion

about ∞ of the equation τ ◦ f1 = F ◦ σ1, D and C can be determined explicitly in terms of A,

F ′(A) and F ′′(A):

D =
z0 − z0

2iAF ′(A)
(2)

and

C = z0 +
(z0 − z0)

2AF ′(A)

(

1 +
AF ′′(A)

F ′(A)

)

. (3)

We claim that A, F ′(A) and F ′′(A) are continuous functions of s. In fact they have one degree

of smoothness more than ω. To see this, suppose that ω ∈ Cβ[0, S] where S < ∞ and β ≥ 0. Then

for s < S, the function gs = F−1
s ◦ FS satisfies the Loewner ordinary differential equation

ġ = g

(

ω + g

ω − g

)

. (4)

Fix z in a neighborhood of D∪ {A} and apply Picard iteration to solve this equation as a function

of s. As a uniform limit of continuous functions, we have that gs ∈ C. By induction, since ω ∈ Cβ ,

we have that ġ ∈ Cβ and hence g = gs ∈ C1+β as a function of s. In particular

A(s) = gs(AS) ∈ C1+β. (5)
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Differentiating (4) with repect to the domain variable z and then dividing by g′s(z) yields that

log g′s ∈ C1 and again by induction log g′s ∈ C1+β, and hence g′s ∈ C1+β. By Cauchy’s integral

formula for w sufficiently close to gz(z0)

g−1
s (w) = F−1

S ◦ Fs(w) =

∫

|ζ−z0|=ε

g′s(ζ)ζ

gs(ζ)− w

dζ

2πi
.

We conclude that g−1
s ∈ C1+β and hence Fs(w) ∈ C1+β. Moreover by the Cauchy integral formula

applied to a small circle Γ winding once around A we have that

F (k)
s (A) =

1

k!

∫

Γ

Fs(ζ)

(ζ −A)k+1

dζ

2πi
∈ C1+β .

Thus by (2) and (3)

B = C + iD ∈ C1+β. (6)

We can normalize by setting

f(z) = f1

(

z − C

D

)

= z − 2t

z
+O

(

1

z2

)

. (7)

Then f is a differentiable function of s, conformal in z ∈ H with f(H) = H \ τ−1(α[0, s]) ⊃ H \ γ
and f(B) = z0. It is not hard to show that t > 0 and dt/ds > 0 by applying Schwarz’s lemma to

F , for instance. The quantity 2t, or sometimes t, is called the half-plane capacity.

Set

σ(z) = A

(

z −B

z −B

)

= σ1

(

z − C

D

)

, (X1)

where B = C + iD. Then

τ ◦ f = F ◦ σ,

so by the chain rule

ḟ

f ′
=

τ ′ ◦ f ḟ

τ ′ ◦ f f ′
=

Ḟ ◦ σ + F ′ ◦ σ σ̇

F ′ ◦ σ σ′
=

σ

σ′

σ + ω

σ − ω
+

σ̇

σ′
. (8)

Note that
σ̇

σ
=

Ȧ

A
− Ḃ

z −B
+

Ḃ

z −B
(9)

and
σ′

σ
=

B −B

(z −B)(z −B)
. (10)

Set

λ(s) = σ−1(ω(s)) = C + iD

(

A+ ω

A− ω

)

. (11)
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Note that ω ∈ Cβ implies λ ∈ Cβ , for β ≥ 0, as functions of s. By (8), (9), and (10)

ḟ

f ′
=

(z −B)(z −B)

B −B

A(z −B) + ω(z −B)

A(z −B)− ω(z −B)
+

Ȧ

A

(z −B)(z −B)

B −B
− Ḃ(z −B)

B −B
+

Ḃ(z −B)

B −B

=
P

z − λ
,

where P is a polynomial of degree at most 3 in z, with coefficients depending on s.

By the normalization (7),

ḟ

f ′
=

−2 dt
ds

z
+O(

1

z2
).

Thus the polynomial P must have degree 0 in z and is negative since dt/ds > 0. In other words, if

we change variables from s to t where

dt

ds
= −P (s)

2
, t(0) = 0,

then
df

dt
=

2f ′(z)

λ− z
,

where λ(s(t)) is a real-valued continuous function of t. This is the chordal version of Loewner’s

equation.

One observation that may shed some light is that each version of Loewner’s equation implies

the associated normalization.

We can now give the explicit “time change” from s to t. If we multiply equation (8) by z − λ

and let z → λ, and use the identity ω = σ(λ) and (10), we obtain

P = lim
z→λ

(z − λ)
ḟ

f ′
= 2

(

σ(λ)

σ′(λ)

)2

= 2

(

(λ−B)(λ−B)

B −B

)2

,

and so
dt

ds
=

|λ−B|4
4 (ImB)2

, (12)

where B(s) and λ(s) are given by (2), (3), (6), and (11).

Summary: Given a Jordan curve γ(0, T ] ⊂ H, T < ∞ and γ(0) ∈ R, suppose z0 /∈ γ, then set

τ(z) = (z − z0)/(z − z0) . Define α by (1) and let F be the conformal map of D onto D \ α[0, s]

where α is parameterized so that F ′(0) = e−s. Then F (s, ζ) satisfies (R-LDE). Set A = F−1(1)
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and define C,D,B, σ and λ by (2), (3), (6) and (X1). Define t(s) by (12) with t(0) = 0, and set

f(t, z) = τ−1 ◦ F (s(t), σ(s(t), z)). We have proved:

Theorem 1. The function f satisfies (C-LDE) and f(t, λ(t)) = γ(t).

Conversely, given a Jordan curve α(0, S] ⊂ D with α(0) ∈ ∂D and S < ∞, as above set

τ(z) = (z − z0)/(z − z0) . Define α = τ−1(γ) and let f be the conformal map of H onto H \ γ[0, t],
where γ is parameterized so that for z near ∞ we have the expansion f(t, z) = z − 2t

z
+ O( 1

z2 ).

Then f(t, z) satisfies (C-LDE). Set B = B(t) = f−1(z0) and define A(t) by

d

dt
logA(t) = −i

(

(λ− ReB)4ImB

|λ−B|4
)

,

with A(0) = 1. Define s(t) by
ds

dt
=

4(ImB)2

|λ−B|4 ,

with s(0) = 0. Define σ by (X1) and set ω(s) = σ(s, λ(t(s)). Then

σ−1(s, ζ) =
B −BAζ

1−Aζ
,

where B = B(t(s)) iand A = A(t(s)). Set F (s, ζ) = τ ◦ f(t(s), λ(t(s), σ−1(s, ζ). Then

Theorem 2. The function F satisfies (R-LDE) and F (s, ω(s)) = α(s).

The first Corollary gives the relation between the smoothness of the driving terms in the radial

and chordal cases.

Corollary 3. Suppose γ(0, T ) is a curve in H, parameterized by half-plane capacity 2t with γ(0) ∈
R. Let λ(t) be the associated driving term for the chordal Loewner equation. If z0 /∈ γ, set

τ(z) = z−z0
z−z0

and α = τ(γ). Reparameterizing α so that the conformal radius of α[0, s] equals e−s,

and letting ω(s) be the driving term for the radial Loewner equation, then for β ≥ 0, dt/ds given

by (12) is bounded above and below, and

ω(s) ∈ Cβ if and only if λ(t) ∈ Cβ.

By (1) it is clear that γ ∈ Cβ if and only if α ∈ Cβ. So by Corollary 3, the results mentioned

in the introduction about the relation between the smoothness of the driving term and the curve

which have been proved in either the radial or chordal case hold in both the radial and chordal

cases.
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Proof. The relation between ω and λ is given by the identity

ω = A

(

λ−B

λ−B

)

. (13)

Since γ is a compact Jordan arc, there is a curve β ⊂ U ≡ C\(γ∪γ) connecting∞ to z0 with positive

spherical distance to the boundary of U . By a normal families argument, or a direct estimate using

Koebe’s theorem, B(s) = f−1
s (z0) lies in a compact subset of H and λ(s(t)) = f−1(γ(t)) lies in a

bounded interval in R. We also have that |λ − B| ≥ ImB since λ is real valued, and so the first

statement of Corollary 3 follows from (12). The second statement follows from (13), (5), and (6).

We define the local Lip-1/2 (semi-)norm of a function f to be

||f ||ℓ 1

2

= inf
0<ε<1

sup
|u−v|<ε

|f(u)− f(v)|√
u− v

.

The next Corollary says that the local Lip-1
2
semi-norm of the driving term is the same in the

radial and chordal regimes. As mentioned earlier the local Lip-12 norm has been used in [MR], [L],

[LMR], [LR] to give a determistic version of the fundamental result of [RS] describing the nature

of the SLEκ curves for various ranges of the parameter κ.

Corollary 4. Under the assumptions of Corollary 3,

||ω||ℓ 1

2

= ||λ||ℓ 1

2

,

where ω is viewed as a function of s and λ is viewed as a function of t.

Proof. We claim that if either ω or λ has bounded local Lip-12 semi-norm then

|ω(s2)− ω(s1)|
|s2 − s1|

1

2

=
|λ(s(t2))− λ(s(t1))|

|t2 − t1|
1

2

+O(|s2 − s1|
1

2 ),

where sj = s(tj), j = 1, 2 and |s2 − s1| ≤ 1.

The functions A(s) and B(s) are differentiable functions of s so that we can write

A2 = A1 +O(s2 − s1)

and

B2 = B1 +O(s2 − s1)
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where Aj = A(sj) and Bj = B(sj). Then by the triangle inequality and (13)

ω(s2)− ω(s1) = A1
(B1 −B1)(λ(s2)− λ(s1))

(λ(s2)−B1)(λ(s1)−B1))
+ O(s2 − s1)

and hence

ω(s2)− ω(s1)

ω(s1)
=

(λ(s2)− λ(s1))(B1 −B1)

(λ(s1)−B1)(λ(s1)−B1)
+ O((λ(s2)− λ(s1))

2) + O(s2 − s1).

By (12)

|ω(s2)− ω(s1)| = |λ(s2)− λ(s1)|
∣

∣

∣

∣

s2 − s1
t2 − t1

∣

∣

∣

∣

1

2

+O(s2 − s1),

where sj = s(tj). Corollary 4 then follows. �

The process above can be reversed to obtain the classical version of Loewner’s equation from

the chordal version. Loewner’s equation for the inverse of f or F can be derived from the equations

above by calculus or the astute reader can deduce one from the other using the plot above. The

converse to (radial) Loewner’s equation states that for any continuous function ω there is a solution

F to Loewner’s equation which is a conformal map from D to D \ α where α([0, s]) is a compact

subset of D, though not necessarily a curve. Using the process above, this statement easily transfers

to the corresponding statement about λ for the chordal version of Loewner’s equation.

From the point of view of SLE curves, there is a fundamental difference between the radial

Loewner equation on the disk and the chordal Loewner equation on the half plane. If we let the

the parameter s → ∞, then since F ′(0) → 0, we must have that

lim inf
s→∞

|α(s)| = 0,

so that if α has a limit as s → ∞, then α(s) → 0, an interior point of D. Likewise, if we let the

parameter t → ∞ then

lim sup
t→∞

|γ(s(t))| = ∞,

so that if γ has a limit in C
∗ as t → ∞, then γ(s(t)) → ∞, a boundary point of H. It is not true

in general that s and t tend to ∞ simulataneously. For example if γ is the positive imaginary axis

and if z0 = 1 + i then α is the portion in D of a circle orthogonal to ∂D . The map f is given by

f(t, z) =
√
z2 − 4t. The reader can easily find a formula for F which shows that the corresponding

parameter s has a finite limit as t → ∞. Indeed F will converge to the conformal map of the disk

onto the region between α and ∂D containing 0. Similarly if γ(t) = 2it, 0 ≤ t < 1 and z0 = 2i,
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then t has a finite limit, but s → ∞. Another example is given by a curve γ(t) which is Jordan

for 0 ≤ t < 2 but closes up when t = 2, surrounding the point z0 = i. Then both t and s are

bounded but the limiting functions f and F are not related via linear fractional transformations

because z0 and ∞ are in different components of the complement of γ. The key fact that was used

in the relation between radial and chordal Loewner, and which is not present in these examples, is

that z0 and ∞ are in the same component of the complement of γ as t varies over a closed interval

0 ≤ t ≤ T < ∞.

3. Two Symmetric Curves.

There is another way to relate chordal Loewner’s equation to a slightly more general radial

Loewner for which the “time” parameterizations for both tend to ∞ simultaneously.

As before, suppose f is a conformal map of the upper half plane H onto H \ γ where γ is

a Jordan arc in H ∪ {0} beginning at γ(0) = 0. By Caratheodory’s Theorem, we may suppose

that f extends to be continuous on the closed upper half plane with f(∞) = ∞. By the Schwarz

Reflection Principle, f extends to be a conformal map of C∗ \ I onto C
∗ \ {γ ∪ γ ∪ J} where C

∗

is the extended plane, I ⊂ R is an interval, J = [−1, 1] and γ = {z : z ∈ γ} is the reflection of γ

about R. By composing f with a linear map, we may normalize f so that near ∞

f(z) = z +O(
1

z
).

Although f is defined on the upper half plane, the extension of f to C∗ \ I has been composed

with a linear map depending upon s, and thus the “domain” of the extension is a function of s.

The map S(z) = 1
2 (z +

1
z
) is a conformal map of the unit disk D onto C

∗ \ [−1, 1] with S(0) = ∞.

Let L(z) = δz + β, δ > 0, β ∈ R, be the linear map of the interval [−1, 1] onto I. Then

F (z) = S−1 ◦ f ◦ L ◦ S(z)

is a conformal map of D onto D \ {α∪ α}, where α is a Jordan arc in D∩H beginning at α(0) = i.

The map F satisfies F (0) = 0 and F ′(0) > 0 and maps the interval [−1, 1] onto [−1, 1]. This

process can be reversed, so that given a conformal map F of D onto D \ {α ∪ α}, with F (0) = 0

and F ′(0) > 0, where α is a Jordan arc in D ∩H beginning at α(0) = i, then the map

f(z) = S ◦ F ◦ S−1 ◦ L−1
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restricted to H is a conformal map of H onto H \ γ where γ is a Jordan arc in H ∪ {0} beginning

at γ(0) = 0.

We now consider f as a function of t > 0 and z ∈ H, as a map from H onto H \ γ[0, t]. We

choose the parameterization of γ so that

f(z) = z − 2t

z
+O(

1

z2
).

Similarly we consider the corresponding map F as a function of s > 0 and z ∈ D, as a map of D

onto D \ {α[0, s] ∪ α[0, s]}. We choose the parameterization α(s) so that

F ′(0) = e−s.

The classical version of Loewner’s equation on the disk (see e. g. Ahlfors, Conformal Invariance)

deals with the case of maps F of D onto D \ α where α is a single Jordan arc. A virtually identical

approach gives the differential equation for two symmetric slits, and yields:

Ḟ = −zF ′(z)
1

2

[

1 + ωz

1− ωz
+

1 + ωz

1− ωz

]

, (14)

where ˙ = d
ds
. The function ω = ω(s) is a continuous function of s with |ω(s)| = 1 and F (ω(s)) =

α(s) and F (ω(s)) = α(s). Since F (D ∩ H) ⊂ D ∩ H by construction, we also have that Imω > 0.

Setting

λ =
δ

2
(ω + ω) + β, (15)

we conclude f(λ) = γ(t), where t = t(s). We will later derive the relationship between the param-

eterizations s and t.

We seek the differential equation satisfied by f(z, t). Write

F (z, s) = e−s[z + a2z
2 + . . .] (16)

where a2 = a2(s). Using the identity

1

2
(F +

1

F
) = f(

δ

2
(z +

1

z
) + β) (17)

we obtain
es

2z
− esa2

2
+ O(z) =

δ

2z
+ β +O(z),

for z near 0. Equating coefficients, we obtain

δ = es and β = −esa2
2

. (18)
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Substituting (16) into (14) and equating coefficients we also obtain that

ȧ2 = −a2 − (ω + ω)

and hence

β̇ =
(ω + ω

2

)

es. (19)

Differentiating (17) with respect to s and z yields

1

2

(

1− 1

F 2

)

Ḟ = ḟ

(

δ

2
(z +

1

z
) + β

)

+1Gf ′

(

δ

2
(z +

1

z
) + β

)(

δ̇

2
(z +

1

z
) + β̇

)

, and

1

2

(

1− 1

F 2

)

F ′ = f ′

(

δ

2
(z +

1

z
) + β

)(

δ

2
(1− 1

z2
)

)

.

Setting ζ = δ
2 (z +

1
z
) + β, taking the ratio of the above two equations and using (14) we obtain

ḟ(ζ)

f ′(ζ)
=

δ(1 − z2)2

2z(1 − ωz)(1− ωz)
− δ̇

2
(z +

1

z
)− β̇. (20)

Note that
(1− z2)2

z2
= (z +

1

z
)2 − 4 =

(

(ζ − β)
2

δ

)2

−4, (21)

and by (15)
(1− ωz)(1 − ωz)

z
= z +

1

z
− (ω + ω) =

2

δ
(ζ − λ). (22)

By (15), (18), and (19), we also have

δ̇

2
(z +

1

z
) + β̇ = ζ + λ− 2β. (23)

Substituting (21), (22), and (23) into (20) we obtain

ḟ(ζ)

f ′(ζ)
=

(λ− β)2 − e2s

ζ − λ
=

(

ω − ω
)2
e2s/4

ζ − λ
.

Thus if
dt

ds
=

(

ω(s)− ω(s)

2i

)2
e2s

2
and t(0) = 0,

then

d

dt
f(ζ) = −2f ′(ζ)

ζ − λ
, (24)

which is the chordal version of Loewner’s equation.
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Given any continuous unimodular function ω, with Imω > 0, Loewner’s equation (14) has a

solution F = F (z, s) which is a conformal map of the disk into the disk, though the complement

of the image is not always the union of two symmetric curves. This can be translated to a similar

statement for the driving term λ. Given any continuous real valued function λ, we can find a

solution to (24) which is conformal on H.

The relation between λ and ω when we use symmetric curves is somewhat simpler than what

was obtained by the first method. By (15), (18), and (19), and using β(0) = 0, we have that

λ =
e2s

2
(ω + ω) +

∫ s

0

erRe ω(r)dr.

We mention one geometric connection between the parameters t and s. By (16) and (17), es/2

is the logarithmic capacity, or transfinite diameter, of the set E = γ[0, t]∪ γ[0, t]∪ [−1, 1]. It is also

one-fourth of the length of f−1(E).
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