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Abstract. Consider an open set D ⊂ R
d , d ≥ 2, and a closed ball B ⊂ D. Let

E
xTB denote the expectation of the hitting time ofB for reflected Brownian motion

in D starting from x ∈ D. We say that D is a trap domain if supx E
xTB = ∞. A

domainD is not a trap domain if and only if the reflecting Brownian motion inD is
uniformly ergodic. We fully characterize the simply connected planar trap domains
using a geometric condition and give a number of (less complete) results for d > 2.

Mathematics Subject Classifications (2000): 60J45, 35P05, 60G17

1. Introduction

In this section, we will limit ourselves to an informal statement of the problem and
a brief review of our results. See Section 2 for rigorous statements of the theorems
and Section 3 for the proofs.

Let D ⊂ R
d , d ≥ 2, be an open connected set with a finite volume and let X

be the normally reflected Brownian motion (RBM) onD constructed using Dirich-
let form methods (see section 2 for details). Note that X is well-defined for every
starting point in D and for x ∈ D we let P

x denote the distribution of Xt starting
from X0 = x, with corresponding expectation E

x . Let B ⊂ D be a closed ball
with non-zero radius and denote by TB = inf{t ≥ 0 : Xt ∈ B} the first hitting time
of B by X. If E

xTB is very large for some x then RBM starting from x appears
to be trapped near the boundary of D. We will say that D ⊂ R

d , d ≥ 2, is a trap
domain if
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sup
x∈D

E
xTB = ∞, (1.1)

and otherwiseD is called a non-trap domain. The definition of a trap domain does
not depend on the choice of B (see Lemma 3.3 in the last section). At this point,
the reader might like to consult Proposition 2.13, Proposition 2.11, and Figure 3.2
below for some simple examples of trap and non-trap domains.

Our article is mainly devoted to the following problem.

Problem 1.1. Find necessary and sufficient geometric conditions forD to be a trap
domain.

The notion of a trap domain is closely related to the notion of Markov chain
ergodicity (see [MT], Part III). We will make this remark more precise in the next
proposition. Let ‖µ‖T V denote the total variation norm of a measure µ. When
µ = f (x) dx, then ‖µ‖T V = ∫ |f (x)| dx. Let�D denote the uniform probability
measure in D.

Proposition 1.2. LetD ⊂ R
d be a connected open set with finite volume. Then the

following are equivalent.

(i) D is non-trap.
(ii) limt→∞ supx∈D ‖P

x(Xt ∈ · )−�D‖T V = 0.
(iii) There are positive constants c1 and c2 such that supx∈D ‖P

x(Xt ∈ · ) −
�D‖T V ≤ c1e

−c2t .

Properties (ii) and (iii) are called the uniform ergodicity of reflecting Brownian
motion in D. The above equivalence is proved for discrete time Markov chains in
Theorem 16.0.2 (ii) and (vi) of [MT].

It will be convenient to express Problem 1.1 in purely analytic terms. LetG(x, y)
be defined on (D \ B)× (D \ B) by

∫

(D\B)∩A
G(x, y)dy = E

x

∫ TB

0
1{Xt∈A}dt, A ⊂ D,

where dy denotes d-dimensional Lebesgue measure. In other words,G(x, y) is the
Green function for the domainD\B with the (zero) Neumann boundary conditions
on ∂D (in the distributional sense) and (zero) Dirichlet boundary conditions on ∂B.
The existence of G(x, y) follows from a result in [Fu] saying that there exists a
strictly positive function pt (x, y) on (0,∞) × D × D such that for every x ∈ D
and A ⊂ D,

P
x(Xt ∈ A) =

∫

D∩A
pt (x, y)dy,

(see Section 3.1 below for details). We will call pt (x, y) the Neumann heat kernel
on D. From a technical point of view, it is easier to define the Green function with
the specified boundary conditions than the corresponding RBM. The condition

sup
x∈D\B

∫

D\B
G(x, y)dy = ∞, (1.2)
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is equivalent to (1.1) but avoids some thorny questions related to the construction
of RBM. For example, if D is a simply connected planar domain, G(x, y) can be
constructed in an elementary way using a conformal mapping and the reflection
principle (see (3.2)). Problem 1.1 can be expressed as

Problem 1.3. Find necessary and sufficient geometric conditions forD so that (1.2)
holds.

We will give a complete solution to Problems 1.1 and 1.3 in the case of finitely
connected planar domains. This result will allow us to analyze explicitly several
examples, it will provide clues to finding trap domains among non-finitely con-
nected and higher dimensional domains, and it will indicate technical difficulties
that one is likely to encounter while dealing with domains in R

d , d > 2.
Problems 1.1 and 1.3 are closely related to some other potential theoretic ques-

tions. Recall thatpt (x, y) denotes the heat kernel forDwith the Neumann boundary
conditions. We will say that the parabolic Harnack principle (PHP in short) holds
in D if for some t0 > 0, c1 = c1(D, t0) < ∞,

pt (x, y) ≤ c1 pt (v, z) for all t ≥ t0 and v, x, y, z ∈ D. (1.3)

It is not hard to show that (1.3) is equivalent to the existence of c2 < ∞ and c3 > 0
such that for some t1 > 0 and all t ≥ t1,

sup
x,y∈D

∣
∣
∣
∣pt (x, y)− 1

Vol(D)

∣
∣
∣
∣ ≤ c2e

−c3t . (1.4)

It is well known that, for a domain with finite volume, a uniform bound for
the transition densities of the reflected Brownian motion, such as (1.3) or (1.4),
implies that the 1-resolvent of the Neumann Laplacian is compact (see the proof
of Theorem 2.5(i)).

Proposition 1.4. Let D ⊂ R
d be a connected open set with finite volume.

(i) Conditions (1.3) and (1.4) are equivalent.
(ii) If the parabolic Harnack principle holds in D then D is a non-trap domain.

(iii) There exists a non-trap domain where the 1-resolvent of the Neumann Lapla-
cian is not compact and, therefore, the parabolic Harnack principle does not
hold.

Among other results, our second most complete theorem is concerned with Jα
domains, a class of domains that may have thin and long channels or bottlenecks
(the parameter α indicates their shape). We will define Jα domains as in Maz’ja
[M], and then prove that Jα domains satisfy the parabolic Harnack principle for
α < 1. We will also show that the result is sharp by constructing a trap domain in
J1.

However, the result on Jα domains is somewhat misleading in its complete-
ness. There are natural classes of J1 domains and even non-Jα domains that are not
trap domains. We will define twisted starlike domains and prove that they are not
trap domains. This class of domains includes the usual starlike domains. A generic
example of a twisted starlike domain (but not necessarily a starlike domain) is a
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domain whose boundary is locally the graph of a function. Next, we will analyze
a modified von Koch domain to compare our results on simply connected planar
domains and Jα domains.

The techniques developed in this paper allow us to determine the relationship
between various classes of “irregular” or “non-smooth” domains, characterized by
the following properties or their lack of: intrinsic ultracontractivity, compactness
of Neumann resolvent, the parabolic Harnack principle and the “trap” property. In
particular we answer a question posed by Davies and Simon in [DS1, p.372]. These
results will be discussed in a separate paper [BC1]. The idea of trap domains might
also be useful in extending some results of [BHM] to a larger class of domains.

2. Main results

It is elementary to see that bounded domains with smooth boundaries are not trap
domains so Problem 1.1 is meaningful only if D has a rough boundary.

2.1. Simply connected planar domains

This subsection will use complex analytic notation and concepts. Consult [P] for
the definitions of prime ends, harmonic measure, etc.

Suppose D is a simply connected open subset of the complex plane C, z0 ∈ D
is a fixed base point, and ζ is a prime end in D. Consider a collection {γn}n≥1 of
non-intersecting cross cuts of D such that γn+1 separates γn from ζ and γn’s tend
to ζ . Suppose further that σ is a curve inD connecting z0 to ζ such that σ ∩ γn is a
single point zn, for each n. This system of curves dividesD into subregions: let�n
denote the component ofD \ γn which does not contain z0. ThusDn = �n \�n+1
is the region between γn and γn+1. Write �1 \ σ = �+ ∪�−, where each set �+
and �− is connected, and set D+

n = �+ ∩ Dn and D−
n = �− ∩ Dn. See Figure

2.1.
The harmonic measure of a set A ⊂ ∂D in the domain D, relative to z, will be

denoted ω(z,A,D). We will say that the system of curves {γn} ∪ σ divide D into
hyperbolic blocks tending to the prime end ζ if for some ε > 0 and all n ≥ 1, the
following conditions hold:

(i) ε ≤ ω(z0, ∂�
+ ∩ ∂D,D) ≤ 1/2 and ε ≤ ω(z0, ∂�

− ∩ ∂D,D) ≤ 1/2,
(ii) for all n ≥ 1 and for all z ∈ ∂D+

n ∪{zn−1}, we have ω(z, ∂D+
n ∩∂D,D) ≥ ε,

(iii) for all n ≥ 1 and for all z ∈ ∂D−
n ∪{zn−1}, we have ω(z, ∂D−

n ∩∂D,D) ≥ ε.

For every simply connected (and even finitely connected) domain and any prime
end ζ , there exists a family of hyperbolic blocks. Here is one way to construct
{γn}n≥1 and σ . Suppose that ϕ is a conformal map of the upper half plane H onto
D, such that ϕ(0) = ζ and ϕ(i) = z0. Then we can take γn = ϕ(H ∩ {|z| = 2−n}),
n ≥ 1, and σ = {ϕ(iy) : 0 < y ≤ 1}. The conformal invariance of the harmonic
measure makes it is easy to verify that {γn} ∪ σ divide D into hyperbolic blocks
tending to ζ . We will later show by example how to construct hyperbolic blocks
geometrically. The term “hyperbolic” in the name of the family {γn} ∪ σ is derived
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zn

zn+1

D+
n

D−
n

ζ

z0 σ

γn
γn+1

Fig. 2.1 Hyperbolic blocks

from the “hyperbolic distance” (see [P]). We will show in the proof of Theorem 2.2
that the hyperbolic distances between zn−1 and zn for n ≥ 1 are bounded below
and above by constants.

Theorem 2.2. A simply connected domain D ⊂ C having finite area is a non-trap
domain if and only if there is a constant ε > 0 such that for each prime end
ζ ∈ ∂D there is a system of curves {γn}∪σ dividingD into hyperbolic blocks with
parameter ε and

sup
ζ

∑

n

|�n| ≤ 1/ε, (2.1)

where |�n| denotes area or 2-dimensional Lebesgue measure of �n.

Note that (2.1) is equivalent to

sup
ζ

∑

n

n |Dn| ≤ 1/ε, (2.2)

and that we have not assumed in Theorem 2.2 that D is bounded.
Our proof of Theorem 2.2 yields some additional useful information. It shows

that if one can find a system of hyperbolic blocks for some prime end ζ with∑
n |�n| = ∞ then D is a trap domain. It follows that in such a case, there is no

need to examine any other family of hyperbolic blocks.

2.2. Maz’ja’s domains

We will define a class of multidimensional domains D ⊂ R
d , d ≥ 2, following

Maz’ja [M]. We call a bounded open set F ⊂ D “admissible” if the part of its
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boundary that lies inD, i.e., ∂iF = ∂F ∩D, is a C∞ manifold. Let |F | denote the
d-dimensional Lebesgue measure on R

d and let S denote the (d − 1)-dimensional
surface area measure on ∂iF .

Definition 2.2. For α > 0, we say that D belongs to class Jα if for some ε > 0,
c < ∞ and all admissible sets F ⊂ D with |F | ≤ ε, we have |F |α ≤ cS(∂iF ).

Clearly it follows from the definition that for 0 < α < β, Jα ⊂ Jβ .

Theorem 2.3. Let D ⊂ R
d be a connected open set with finite volume.

(i) Domains D ∈ Jα with α < 1 satisfy the parabolic Harnack principle.
(ii) There exists a trap domain D ∈ J1.

Part (ii) of Theorem 2.3 suggests that this result provides a sharp answer to
Problems 1.1 and 1.3. It turns out that it is not a complete solution. We will show in
Theorem 2.9 and Proposition 2.12 that there exist some natural classes of non-trap
domains that are not contained in Jα for any α > 0.

The intuitive meaning of the definition of a Jα domain is quite clear but proving
that a given domain belongs to this class is far from trivial, because the definition
involves a condition that is supposed to hold for a very large class of sets F . The
methods used by Maz’ja to analyze concrete examples (see [M], Section 3.3.3,
page 175) are based on explicit mappings and estimates of their Jacobians. This is
sufficient to deal with regular horn-shaped domains but the method does not seem
to be applicable to fractal domains. On the other hand, it is relatively easy to show
that a domain does not belong to a class Jα because all one has to do is to find a
sequence of admissible sets Fn with |Fn|α/S(∂iFn) → ∞.

We recall another class of domains from [M], defined in terms of conductivity
or relative capacity.

Definition 2.4. For α > 0, a domain D ⊂ R
d is said to belong to class J2,α if for

some ε > 0, c > 0 and for any bounded relatively closed setF inD and open subset
G ofD withF ⊂ G, |G| ≤ ε and Cap(F,G) > 0, we have |F |α ≤ cCap(F,G)1/2.
Here

Cap(F,G) = inf
{ ∫

D

|∇f (x)|2dx : f is Lipschitz on D,

f ≥ 1 on F and f ≤ 0 on D \G
}
.

It is clear that for 0 < α < β, J2,α ⊂ J2,β . Domains in classes Jα and J2,α can
be characterized in terms of the Sobolev embedding. By Lemma 4.3.2 on page 199
and Theorem 4.3.3.1 on page 200 of [M] (taking p = 1 = s, q∗ = q = 1/α there),
a domain D ⊂ R

d is in Jα for some α < 1 if and only if

‖u‖1/α ≤ c (‖∇u‖1 + ‖u‖1) for u ∈ W 1,1(D); (2.3)

while by Theorem 4.3.3.1 on page 200 of [M] (taking p = 2 = s, q∗ = q = 1/α
there), D is a domain in J2,α for some α < 1/2 if and only if there is c > 0 such
that

‖u‖1/α ≤ c (‖∇u‖2 + ‖u‖2) for u ∈ W 1,2(D). (2.4)
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Theorem 2.5. Let D ⊂ R
d be a connected open set with finite volume.

(i) Domains D ∈ J2,α with α < 1/2 satisfy the parabolic Harnack principle.
(ii) There exists a trap domain D ∈ J2,1/2.

The definition of J2,α is a bit more abstract than that of Jα . According to Prop-
osition 4.3.4.2 on page 203 of [M], we have Jα+ 1

2
⊂ J2,α . Hence Theorem 2.3(i)

follows from Theorem 2.5(i), while Theorem 2.3(ii) implies Theorem 2.5(ii).
The rest of this subsection is devoted to the discussion of two classes of domains

well known in analysis. Suppose D ⊂ R
d . For 1 ≤ p ≤ ∞, and integer k ≥ 1, we

denote by Wk,p(D) the Sobolev space of functions having weak derivatives of all
orders α, |α| ≤ k, satisfying

‖f ‖Wk,p(D) =
∑

0≤|α|≤k
‖Dαf ‖p < ∞.

An extension operator on Wk,p(D) is a bounded linear operator  : Wk,p(D) →
Wk,p(Rd) such thatf

∣
∣
D

= f for f ∈ Wk,p(D). We say thatD is aWk,p-exten-
sion domain if there exists an extension operator for Wk,p(D) (see, e.g., [J]).

Theorem 2.6. Every W 1,1-extension domain is a Jd−1
d

-domain and every W 1,2-

extension domain is a J2,α-domain with α = (d − 2)/(2d).

The definition of an extension domain is not easily verifiable. Jones [J] found an
important class of extension domains with an intuitive geometric characterization—
he called them (ε, δ)-domains. We say that D is an (ε, δ)-domain if δ, ε > 0, and
whenever x, y ∈ D and |x − y| < δ then there exists a rectifiable arc γ ⊂ D join-
ing x and y with length(γ ) ≤ ε−1|x − y| and moreover min {|x − z|, |z− y|)} ≤
ε−1 dist(z, ∂D) for all points z ∈ γ . Here dist(z, ∂D) is the Euclidean distance
between a point z and the set ∂D.

Corollary 2.7. The parabolic Harnack principle holds in every (ε, δ)-domain with
finite volume.

Corollary 2.7 follows from our Theorem 2.6 and Theorem 1 of Jones [J]. Note
that non-tangentially accessible domains defined by Jerison and Kenig in [JK] are
(ε,∞)-domains (see (3.4) of [JK]).

A planar simply connected domain D is called a John domain if there exists
c < ∞ such that for any curve � ⊂ D with endpoints x, y ∈ ∂D, which cuts D
into D1 and D2, we have diam(D1) < c diam(�) or diam(D2) < c diam(�) (see
[P] p. 96). Since the area of a set is bounded by a constant times the square of its
diameter, and the diameter of a rectifiable arc is bounded above by its length, it
follows that every John domain is a J1/2-domain. So by Theorem 2.3 we have the
following.

Corollary 2.8. Every John domain is a J1/2-domain and so the parabolic Harnack
principle holds in every John domain with finite volume.
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2.3. Twisted starlike domains

This subsection is devoted to some multidimensional domains which are not trap
domains but do not necessarily belong to the family Jα for any α < 1. There are two
geometric reasons why a domain might not belong to Jα for any α < 1. The first
one is that it may contain many bottlenecks; we discuss such domains in Proposi-
tion 2.12. The second reason might be that the domain contains very thin and long
channels—this is the class of domains we are going to discuss in this subsection.

We will temporarily drop the assumption that the vector of reflection for the
RBM is normal to stress that our probabilistic method of proof does not depend on
the assumption that the vector of reflection is normal. First suppose that D ⊂ R

d ,
d ≥ 2, has a C2 boundary, n(x) is the unit inward normal vector at x ∈ ∂D, and
v(x), x ∈ ∂D, is the unit reflection vector field satisfying for some c1 > 0 and all
x ∈ ∂D,

(v(x),n(x)) > c1. (2.5)

If Bt is a d-dimensional Brownian motion then the reflected Brownian motion
starting from x0 ∈ D can be defined as the unique strong solution to the following
stochastic differential equation,

Xt = x0 + Bt +
∫ t

0
v(Xs)dLs, (2.6)

where Lt is the local time of Xt on the boundary of D (see [LS]).
Note that reflected Brownian motion with the normal reflection on the boundary

in an arbitrary open setD ⊂ R
d , d ≥ 2, will be defined in Section 3.1 below using

the Dirichlet form approach.
The idea of a “twisted starlike” domain is best explained by an example such

as

D = (−1, 1)× (0, 2) \
(⋃

k≥1

{(2−k, y) : 0 < y < 1} ∪ {(0, y) : 0 < y < 1}
)

.

(2.7)

It is easy to see that this domain is not starlike but it is also clear that one can deform
this domain in a smooth way to make it a starlike domain (see Remark 2.10 below).

We will callD a twisted starlike domain if there exists a continuous one-to-one
mapping F : D → R

d such that F(D) is bounded and starlike with respect to
0 ∈ R

d , B(0, r0) ⊂ F(D) for some r0 > 0, |F | is of class C2 in D and its partial
derivatives of second order are bounded above, and 0 < c1 < |∇|F(x)|| < c2 < ∞
for x ∈ D ∩ F−1(B(0, r0/2)).

Theorem 2.9. (i) Assume that D is a bounded twisted starlike domain with C2

boundary, v(x) satisfies (2.5) and (v(x),∇|F(x)|) ≤ 0 for every x ∈ ∂D. Define
the reflected Brownian motionXt inD with the oblique direction of reflection v(x)
using (2.6). ThenD is not a trap domain in the sense that the supremum in (1.1) is
finite.
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(ii) Assume that D is a bounded twisted starlike domain (with no assumptions
on the smoothness of the boundary) and let Xt be the reflected Brownian motion
in D with the normal direction of reflection, in the sense of Section 3.1. Then D is
not a trap domain.

Note that the twisted starlike domain in (2.7) does not belong to Maz’ja’s Jα
class for any α < 1.

Remark 2.10. A bounded domain D in the plane is called monotone if it locally
lies above the graph of a (not necessarily continuous) function, after a rotation. In
other words, D is monotone if for every x ∈ ∂D, there exists a ball B centered at
x, a function f : R → R and an orthonormal coordinate system such that in that
system x = 0 and D ∩ B = {(z, y) ∈ B : y > f (z)}. We now sketch an argument
showing that every such domain is a twisted starlike domain and therefore is a
non-trap domain.

First, consider the domainD in (2.7) and letA = D∩((−1/4, 3/4)×(0, 3/2)).
If f (z) = exp(iπz+2) in the complex notation then f (A)∪B(0, e3/4) is a starlike
domain with respect to 0. Since ∂D \ A is a polygonal line, it is easy to see that
f can be extended to a function F satisfying the conditions in the definition of a
twisted starlike domain.

Next consider a general bounded monotone domain. By compactness, its bound-
ary can be covered by a finite number of open sets {Uk} as in the definition of a
monotone domain. If the corresponding coordinate systems in two overlappingUk’s
have parallel axes, we combine the two sets into one, so that we can assume that
for every pair of overlapping Uk’s, the coordinate systems are at a non-zero angle.
The part of the boundary of D inside the intersection of any two Uk’s is the graph
of a function in each of two non-aligned coordinate systems corresponding to these
Uk’s. This easily implies that the boundary of D is Lipschitz in the intersection of
any two Uk’s. For every k, we can define F on Uk \⋃j �=k Uj using the same idea
as in the special case of (2.7). It is easy to see that the separate pieces of F can
be patched together using C2 functions because the boundary of D is Lipschitz
outside

⋃
k(Uk \⋃j �=k Uj ).

A similar argument seems to work in higher dimensions, at least for some classes
of domains, but we will not try to provide the details of the proof here.

2.4. Examples

The geometric characterization of simply connected planar domains can be made
even more explicit when we limit ourselves to “horn” domains. Suppose
f : [1,∞) → (0,∞) is a Lipschitz function and let the corresponding horn
domain Df be defined by

Df =
{
(x, y) ∈ R

2 : x > 1, |y| < f (x)
}
.
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Proposition 2.11. A horn domain Df ⊂ R
2 is a trap domain if and only if

∫ ∞

1

(∫ x

1

1

f (y)
dy

)

f (x)dx = ∞.

The classical von Koch snowflake may be defined as follows. Start with an
equilateral triangle T1. Consider one of its sides I and the equilateral triangle one
of whose sides is the middle one third of I and whose interior does not intersect
T1. There are three such triangles; let T2 be the closure of the union of these three
triangles and T1 (see Fig. 2.2).

We proceed inductively. Suppose I is one of the line segments in ∂Tj and con-
sider the equilateral triangle one of whose sides is the middle one third of I and
whose interior does not intersect Tj . Let Tj+1 be the closure of the union of all such
triangles and Tj . The snowflake DvK is the interior of the closure of the union of
all triangles constructed in all inductive steps.

We will illustrate our results by a variant of the von Koch snowflake which can be
obtained from the snowflakeDvK as follows. Fix a function f : (0,∞) → (0,∞)

with f (a) ≤ a for all a. Consider any two triangles in the above construction whose
boundaries have a common part I with length a > 0. Let I ′ be I with the middle
f (a)-portion removed, i.e., if I has endpoints x and y then I ′ is the union of two
closed line segments, the first with endpoints x and x+ a−f (a)

2
y−x
a

, and the second

Fig. 2.2 Second step of snowflake construction, i.e., T2
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with endpoints y − a−f (a)
2

y−x
a

and y. Let Df be DvK minus all sets of the form
I ′ (see Fig. 2.3). The point of the construction is that the passage from a smaller
triangle to a bigger triangle is blocked in Df by a wall with a small opening. One
may guess that if f (a)/a tends to 0 rapidly as a → 0 then Df is a trap domain.

Proposition 2.12. (i) Each of Corollaries 2.7 and 2.8 separately implies that the
von Koch snowflake DvK is not a trap domain. In other words, Df is not a trap
domain for f (a) = a.

(ii) Suppose that f (a) = aβ where β < 2. Then Df ∈ Jβ/2 and so Theorem
2.3(i) implies that Df is not a trap domain.

(iii) Suppose that f (a) = exp(−a−γ ). If γ < 2 then Df is not a trap domain,
but it is a trap domain if γ > 2.

Parts (i) and (ii) of Proposition 2.12 are much weaker than part (iii)—we stated
them only to illustrate the strength of various results. Parts (ii) and (iii) of Proposi-
tion 2.12 show that Theorem 2.3(ii) must be interpreted with a great caution. Note
that a domain Df , with f (a) = exp(−a−γ ) for some 0 < γ < 2, is not in class
Jα for any α > 0. So one must not presume that a domain is a trap domain just
because it does not belong to class Jα for any 0 < α < ∞.

Another example is a spiral domain, definition in the next proposition.

Fig. 2.3 Modified snowflake Df
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Proposition 2.13. Let

Sp = D \ {reiθ : r = θ−p and θ ≥ 1},
where D is the open unit disc. Then Sp is a trap domain if and only if p ≤ 1.

3. RBM, Green’s function and trap domains

As was pointed out previously, Problem 1.1 is meaningful only for domains with
non-smooth boundary. There are many definitions of reflecting Brownian motion on
smooth domains. The most elementary and the most powerful definitions, such as
the (deterministic) Skorokhod problem method and the martingale problem method,
apply only whenD has aC2-smooth boundary. Hence, we cannot use any of the rel-
atively easy definitions of reflecting Brownian motion. For this reason, Subsection
3.1 will be devoted to the definition of RBM and its Green function in non-smooth
domains. Subsection 3.2 will give the proofs to the results presented in Sections 1
and 2.

3.1. Reflecting Brownian motion and Green’s function

Constructing a reflecting Brownian motion on a non-smooth domainD is a delicate
problem. Let

W 1,2(D) := {f ∈ L2(D, dx) : ∇f ∈ L2(D, dx)}
be the Sobolev space on D of order (1, 2). Fukushima [Fu] used the Martin-
Kuramochi compactification D∗ of D to construct a continuous diffusion process
X∗ on D∗ with transition semigroup denoted Pt , such that

{f ∈ L2(D, dx) : sup
t>0

1

t

∫

D

f (x)(f (x)− Ptf (x))dx < ∞} = W 1,2(D)

and for f ∈ W 1,2(D),

E(f, f ) := lim
t→0

1

t

∫

D

f (x)(f (x)− Ptf (x))dx = 1

2

∫

D

|∇f (x)|2dx.

The pair (E,W 1,2(D)) is called the Dirichlet space of X∗ in L2(D∗,m), where
m is Lebesgue measure on D extended to D∗ by setting m(D∗ \ D) = 0. See
[FOT] for definitions and properties of Dirichlet spaces, including the notions of
quasi-everywhere, quasi-continuous, etc. The processX∗ could be called reflecting
Brownian motion in D but it lives on an abstract space D∗ that contains D as a
dense open set. Chen [C] proposed referring to the quasi-continuous projection X
of X∗ from D∗ into the Euclidean closure D as reflecting Brownian motion in D.
The projection process X is a continuous process on D, but in general X is not a
strong Markov process on D (for example this is the case when D is the unit disk
with a slit removed). However whenD is a Lipschitz domain, it can be shown that
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X is the usual reflecting Brownian motion in D as constructed in [BH]. See the
introductions of [C] and [CFW] for the history of constructing reflecting Brownian
motion on non-smooth domains.

Let {Pt , t ≥ 0} and (L,D(L)) denote the semigroup and the L2-infinitesimal
generator of X∗, respectively. We call −2L the Neumann Laplacian onD. Clearly
its 1-resolvent R1 is given by R1f = ∫∞

0 e−tP2t f dt . The following result might
be known to experts. We present it here for the reader’s convenience.

Lemma 3.1. Suppose that D is a domain in R
d with finite volume. Then the fol-

lowing are equivalent.

(i) The Neumann Laplacian in D has discrete spectrum.
(ii) The 1-resolvent R1 of the Neumann Laplacian in D is a compact operator in

L2(D, dx).
(iii) The embedding W 1,2(D) → L2(D, dx) is compact.

Proof. The equivalence of (i) and (iii) follows immediately from Theorem 4.8.2 and
Theorem 4.10.1.3 of Maz’ja [M]. If R1 is compact, then R1 has discrete spectrum,
and so does the Neumann Laplacian inD; that is, (ii) implies (i). Now suppose (iii)
holds. Since R1 is a bounded operator from L2(D, dx) into W 1,2(D), it follows
that R1 is a compact operator from L2(D, dx) into itself. Hence, (iii) implies (ii)
and this completes the proof of the lemma. ��

As is pointed out in [BBC], the reflecting Brownian motion defined above is
conformally invariant in planar domains in the following sense. Suppose that D
and U are two planar domains, ϕ is a one-to-one conformal map from D onto U
and X∗ is the reflecting Brownian motion on D constructed above. Then ϕ(X∗) is
a time-changed RBM on U . Suppose that B is a closed ball in a planar domain D.
Let Y ∗ be the subprocess of X∗ killed upon hitting B, which is called the RBM on
D∗ killed upon hittingB. If we use processX instead ofX∗ in the above procedure,
then the process Y obtained will be called RBM on D killed upon hitting B. Let
GD\B(x, y) be the Green function of Y ∗, that is, for every Borel function f ≥ 0
on D \ B,

∫

D\B
GD\B(x, y)f (y)dy = E x

∫ TB

0
f (Xs)ds

= E x

∫ TB

0
f (X∗

s )ds for every x ∈ D \ B.

It follows from [Fu] and [FOT] that (i) GD\B(x, y) is symmetric and continuous
in (D \B)× (D \B) \ d , where d denotes the diagonal; (ii) For every y ∈ D \B,
x �→ GD\B(x, y) is harmonic in D \ (B ∪ {y}). It follows from the conformal
invariance of RBM that

GD\B(x, y) = Gϕ(D)\ϕ(B)(ϕ(x), ϕ(y)) for x, y ∈ D \ B. (3.1)
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3.2. Trap domains

In this subsection, we give proofs for the results stated in Sections 1 and 2.

Proof of Proposition 1.4. (i) Obviously, (1.4) implies (1.3). For s, t ≥ t0 we have
pt+s(x, y) = ∫

pt (x, z)ps(z, y)dz. Now we can apply Lemma 6.1 of [BTW] (see
Lemma 1 of [BK] for a more accessible version) to see that (1.3) implies conver-
gence of pt (x, y) to the stationary density at an exponential rate, as in (1.4).

(ii) If we assume (1.3) holds then for some c4 > 0 and all x ∈ D, P
x(TB ≤

t1) ≥ ∫
B
pt1(x, y)dy ≥ c4. By the Markov property ofX∗ and the fact that Px(X∗

t ∈
D∗\D) = 0 for every x ∈ D and t > 0, we conclude that P

x(TB ≥ kt1) ≤ (1−c4)
k

for every x ∈ D and k ≥ 1. This implies that

sup
x∈D

E
xTB ≤ sup

x∈D

∞∑

k=0

t1P
x(TB ≥ kt1) < ∞

and so D is not a trap domain.
(iii) The proof of part (iii) of this proposition will be given after the proof of

Proposition 2.12. ��
We will now present two elementary lemmas showing that our main problem

is well posed.

Lemma 3.2. IfD ⊂ R
d , d ≥ 1, has finite volume and B is a closed ball inD, then

E
xTB < ∞ for every x ∈ D.

Proof. Recall the definition of RBMX∗ onD∗, and the RBM Y ∗ onD∗ \B killed
upon hitting B given in Section 3.1. Since Y ∗ is transient, by Lemma 1.6.4 and
Theorem 1.5.1 of [FOT], there is a function g ∈ L1(D \B, dx) such that g > 0 and
Gg < ∞ a.e. on D \ B. One can modify g as follows. Define A1 = {x ∈ D \ B :
Gg(x) ≤ 2} and for k ≥ 2, Ak = {x ∈ D \ B : k < Gg(x) ≤ k + 1}. Note that
G(g1Ak )(x) ≤ supy∈Ak G(g1Ak )(y) for x ∈ D \ B. Let f (x) = ∑∞

k=1 2−k(k +
1)−1g(x)1Ak (x). Then f ≤ g, f > 0 andGf ≤ 1 a.e. onD \B. SinceD has finite
volume and G is symmetric, we have

∫

D\B
f (x)G1(x)dx =

∫

D\B
Gf (x)dx ≤ |D| < ∞.

This implies that E
xTB = G1(x) < ∞ for a.e. x ∈ D \ B. Now for an arbitrary

but fixed x0 ∈ D \ B, let r > 0 so that B(x0, 2r) ⊂ D \ B. By the strong Markov
property of Y ∗, we have

G1(x) = E
xτB(x0,r) + E

x
[
G1(Y ∗

τB(x0,r)
)
]

for x ∈ B(x0, r).

Clearly E
xτB(x0,r) < ∞ for x ∈ B(x0, r) as {X∗

t , 0 ≤ t < τB(x0,r)} is the killed

Brownian motion in B(x0, r). Function u(x) := E
x
[
G1(Y ∗

τB(x0,r)
)
]

is finite a.e.

on B(x0, r) and harmonic in B(x0, r) so it is finite everywhere on B(x0, r). This
implies thatG1(x) < ∞ for every x ∈ B(x0, r) and hence for every x ∈ D \B. ��
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Lemma 3.3. If D ⊂ R
d is a connected open set with finite volume and B1 and

B2 are closed non-degenerate balls in D then supx∈D E
xTB1 < ∞ if and only if

supx∈D E
xTB2 < ∞.

Proof. This is standard so we only sketch the proof. Suppose that supx∈D E
xTB1 <

∞. Then supx∈D P
x(TB1 > t) ≤ supx∈D E

xTB1/t , and so infx∈D P
x(TB1 ≤ t0) ≥

c1 for some t0 < ∞ and c1 > 0. Let pt (x, y) and p0
t (x, y) denote the transi-

tion density function for RBM X∗ on D∗ and the killed Brownian motion in D,
respectively. Clearly pt (x, y) ≥ p0

t (x, y) on (0,∞)×D ×D and so

inf
x∈B1,y∈B2

p1(x, y) ≥ inf
x∈B1,y∈B2

p0
1(x, y) > c2 > 0.

By the Markov property of X∗
t and the fact that P

x(X∗
t ∈ D∗ \ D) = 0 for every

x ∈ D and t > 0, we have supx∈D P
x(TB2 ≤ t0 + 1) ≥ c1c2 and by induction,

supx∈D P
x(TB2 > k(t0 +1)) ≤ (1−c1c2)

k . This implies that supx∈D E
xTB2 < ∞.

��

Note that there is nothing special about assuming Bj are balls. We could, for
example, use compact sets with non-empty interior.

Proof of Proposition 1.2. Clearly (iii) implies (ii). Let B be a ball with B ⊂ D

and for any set A, let |A| denote the Lebesgue measure of A. If (ii) holds, then
there is t0 ≥ 0 such that supx∈D ‖P

x(Xt0 ∈ · ) − �D‖ ≤ (1/2)|B|/|D| and so
infx∈D P

x(Xt0 ∈ B) ≥ (1/2)|B|/|D|. This implies that infx∈D P
x(TB ≤ t0) ≥

(1/2)|B|/|D|. By the same argument as that in the proof of Proposition 1.4(ii), we
have supx∈D E

xTB < ∞. Hence (ii) implies (i).
Now we will show that (i) implies (iii). Suppose that D is a non-trap domain.

Let x0 ∈ D and r > 0 be such that B(x0, 3r) ⊂ D. Since supx∈D E
xTB(x0,r) =

c1 < ∞, supx∈D P
x(TB(x0,r) > t) ≤ c1/t and so infx∈D P

x(TB(x0,r) ≤ n1) > 1/2
for some integer n1 > 0. LetWt denote the Brownian motion in R

d and let p0 > 0
be defined by P

x(Wt ∈ B(x, r) for t ∈ [0, 1]) = p0. Recall from the beginning of
this section that X∗ denotes the reflected Brownian motion inD, in an appropriate
sense, and it behaves like a Brownian motion insideD before hitting the boundary.
By the strong Markov property of X∗,

inf
x∈D

P
x(TB(x0,r) ≤ n1 and X∗

t ∈ B(x0, 2r) for t ∈ [TB(x0,r), TB(x0,r) + 1])

> (1/2)p0 > 0.

If we let S = inf{n ≥ 0 : n ∈ Z and Xn ∈ B(x0, 2r)}, then the above implies that
infx∈D P

x(S ≤ n1 + 1) > c2 := p0/2 > 0. Using the Markov property of X∗ at
integer times k(n1 + 1) and the fact that P

x(X∗
n ∈ D∗ \D) = 0 for every x ∈ D

and n ∈ Z, we deduce that supx∈D P
x(S ≥ k(n1 + 1)) ≤ (1 − c2)

k and so

sup
x∈D

E
xS ≤ sup

x∈D

∞∑

k=0

k(n1 + 1)Px(S ≥ k(n1 + 1)) < ∞.
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Clearly, �D is the invariant measure for X∗
t . Now applying Theorem 16.0.2 of

[MT] to the Markov chain {X∗
n, n = 0, 1, 2, · · · }, we have

sup
x∈D

‖P
x(Xn ∈ · )−�D‖T V ≤ c3e

−c4n, for every n ≥ 1,

where c3, c4 are two positive and finite constants. Using the semigroup property of
X∗
t and the fact that �D is its invariant measure, we have

sup
x∈D

‖P
x(Xt ∈ · )−�D‖T V ≤ sup

x∈D
‖P

x(Xn ∈ · )−�D‖T V ,

for all real t and integer n such that t ≥ n. This establishes (iii) and therefore
completes the proof of Proposition 1.2. ��
Proof of Theorem 2.2. We will use the Riemann mapping theorem. It will be con-
venient first to map the unit disc D ontoD, and then switch to a different mapping,
from the upper half-plane H toD. We write z = x+ iy and use dxdy for 2-dimen-
sional, or area, measure.

Let B be a closed ball contained inD and let f be a conformal map of the unit
disc D ontoD with f ({z : |z| < r0)}) ⊂ B. Let U be the “double” of D \ f−1(B):

U =
(
D \ f−1(B)

)
∪ ∂D ∪

{
1

z
: z ∈ D \ f−1(B)

}

,

and let gU(z, a) be the classical Dirichlet Green’s function forU with gU(z, a) = 0
for z ∈ ∂U , a ∈ U and gU(z, a) + log |z − a| harmonic for z ∈ U . Then for
z, a ∈ D \ f−1(B) the function

G(z) = gU(z, a)+ gU(z, 1/a)

satisfies G(z) = 0 for z ∈ ∂f−1(B), G(z) + log |z − a| is harmonic for z ∈
D \ f−1(B) and ∂G

∂r
= 0 on ∂D, since G(z) = G(1/z). By the reflection and

maximum principles, and (3.1),

G(z) = GD\f−1(B)(z, a) = GD\B(f (z), f (a)). (3.2)

By the maximum principle, for z, a ∈ U ,

G(z) ≤ log
c1

|z− a||1 − az|
since the difference of these two functions is harmonic, G = 0 on ∂U and |z −
a||1 − az| ≤ (1 + 1/r0)2 ≡ c1. Thus for z, a ∈ D \ f−1(B),

GD\f−1(B)(z, a) ≤ log c1 + log
1

|z− a|2 ,

and by (3.2) D is non-trap if

sup
a∈D

∫

D

log
1

|z− a| |f
′(z)|2dxdy < ∞, (3.3)
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since |D| = ∫ |f ′(z)|2dxdy < ∞. Note also that
∫
D

log(1/|z−a|)dxdy < C < ∞
and thus (3.3) holds if and only if

sup
1−δ<|a|<1

∫
log

1

|z− a| |f
′(z)|2dxdy < ∞.

If δ is sufficiently small, then for 1 − δ < |a| < 1 and for z ∈ ∂U ,

|z− a||1 − az| ≥ c2 > 0

so by the maximum principle again

log
c2

|z− a||1 − az| ≤ G(z).

Thus for z, a ∈ D \ f−1(B),

log
c2

2
+ log

1

|z− a| ≤ GD\f−1(B)(z, a)

and by (3.2) D is non-trap if and only if

sup
3/4≤|a|≤1

∫

{|z−a|<1/2}
log

1

|z− a| |f
′(z)|2dxdy < ∞. (3.4)

We will show that (3.4) holds if and only if

sup
|a|=1

∫

{|z−a|<3/4}
log

1

|z− a| |f
′(z)|2dxdy < ∞. (3.5)

Consider a ∈ D with 3/4 < |a| < 1 and let Ba = {z : |z − a| < (1 − |a|)/2}
and a′ = a/|a|. By Corollary 1.6 on page 10 of [P], for some constant c3 < ∞ not
depending on a,

sup
z∈Ba

|f ′(z)| ≤ c3 inf
z∈Ba

|f ′(z)|.

A straightforward calculation shows that
∫

Ba

log
1

|z− a′|dxdy ≥ c4

∫

Ba

log
1

|z− a|dxdy,

so
∫

Ba

log
1

|z− a′| |f
′(z)|2dxdy ≥ c5

∫

Ba

log
1

|z− a| |f
′(z)|2dxdy. (3.6)

On Bca , we have

log
1

|z− a′| ≥ c6 log
1

|z− a|
so

∫

Bca

log
1

|z− a′| |f
′(z)|2dxdy ≥ c6

∫

Bca

log
1

|z− a| |f
′(z)|2dxdy. (3.7)
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Note that {|z−a| < 1/2} ⊂ {|z−a′| < 3/4}. Combining (3.6) and (3.7), we obtain
∫

{|z−a′|<3/4}
log

1

|z− a′| |f
′(z)|2dxdy ≥ c7

∫

{|z−a|<1/2}
log

1

|z− a| |f
′(z)|2dxdy,

and this proves that (3.4) and (3.5) are equivalent.
We transfer (3.5) to the upper half plane H by applying the conformal maps to

D given by ψa(z) = a(i − z)/(i + z), with |a| = 1. Thus (3.5) is equivalent to

sup
ϕ

∫

H∩{|z|<1}
log

1

|z| |ϕ
′(z)|2dxdy < ∞, (3.8)

where the supremum is taken over all conformal maps ϕ of H onto D such that
ϕ(i) = z0, a fixed base point inD. We will split the rest of the argument into several
lemmas. Recall the parameter ε from the definition of hyperbolic blocks.

Lemma 3.4. If {γn} ∪ σ divides D into hyperbolic blocks tending to ζ = ϕ(0),
where ϕ is a conformal map of H ontoD mentioned above, then ϕ−1(σ ∩�1) lies
in a non-tangential cone �ε = {z ∈ H : πε < arg z < π(1 − ε)}.
Proof. Recall condition (i) in the definition of hyperbolic blocks. It implies, by
conformal invariance, that I+

n = ϕ−1(∂D+
n ∩ ∂D) ⊂ (0,∞) for all n ≥ 1 or all

of these intervals belong to (−∞, 0). We will assume without loss of generality
that I+

n = ϕ−1(∂D+
n ∩ ∂D) ⊂ (0,∞) and I−

n = ϕ−1(∂D−
n ∩ ∂D) ⊂ (−∞, 0). If

z ∈ σ ∩Dn and if Re ϕ−1(z) ≤ 0, then

ε ≤ ω(z, ∂D+
n ∩ ∂D,D) = ω(ϕ−1(z), I+

n ,H)

≤ ω(ϕ−1(z), [0,+∞),H) = 1 − 1

π
argϕ−1(z),

since the harmonic measure of an interval evaluated at z is equal to the angle sub-
tended at z by the interval divided byπ . Similarly if z ∈ σ ∩Dn and Re ϕ−1(z) > 0,
then

ε ≤ ω(z, ∂D−
n ∩ ∂D,D) = ω(ϕ−1(z), I−

n ,H)

≤ ω(ϕ−1(z), (−∞, 0],H) = 1

π
argϕ−1(z).

Thus

πε ≤ argϕ−1(z) ≤ π(1 − ε)

and the lemma follows. ��
Recall that zn is the intersection point of γn and σ in the definition of hyperbolic

blocks for D.

Lemma 3.5. There is a δ > 0 depending on ε but not on n so that if z ∈ Dn∪{zn−1},
n ≥ 1, then

δ ≤
∣
∣
∣
∣
ϕ−1(z)

ϕ−1(zn)

∣
∣
∣
∣ ≤ 1

δ
. (3.9)
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Proof. Write I+
n = [a+

n+1, a
+
n ] and I−

n = [a−
n , a

−
n+1]. As in the proof of Lemma

3.4, by condition (ii) in the definition of hyperbolic blocks,

ε ≤ ω(ϕ−1(zn), I
+
n−1,H) ≤ ω(ϕ−1(zn), [a+

n ,∞),H)

= 1 − 1

π
arg(ϕ−1(zn)− a+

n ).

This implies that

a+
n ≤ C|ϕ−1(zn)|,

which is perhaps easiest to see by scaling H by the factor 1/a+
n . Similarly by

condition (ii),

ε ≤ ω(ϕ−1(zn), I
+
n ,H) ≤ ω(ϕ−1(zn), [0, a+

n ],H)

= 1

π
arg

(
ϕ−1(zn)− a+

n

ϕ−1(zn)

)

.

By Lemma 3.4, ϕ−1(zn) lies in the non-tangential cone �ε, so this implies a+
n ≥

c|ϕ−1(zn)|.We conclude that a+
n is comparable to |ϕ−1(zn)| for all n and similarly

|a−
n | is comparable to |ϕ−1(zn)|.

Now suppose that z ∈ γn+1 ⊂ ∂Dn. Then by conditions (ii) and (iii) either

ε ≤ ω(ϕ−1(z), I+
n ,H) ≤ 1 − 1

π
arg(ϕ−1(z)− a+

n+1), (3.10)

or

ε ≤ ω(ϕ−1(z), I−
n ,H) ≤ 1

π
arg(ϕ−1(z)− a−

n+1). (3.11)

Conditions (3.10) and (3.11) define two half-lines in H. Let T be the open triangle
with sides on these half-lines and the real axis. We have shown that ϕ−1(z) /∈ T
for z ∈ γn+1 and hence for all z ∈ Dn ∪ {zn−1}, since ϕ−1(γn+1) is a crosscut
of H. Two of the vertices of T are a−

n+1 and a+
n+1 and its height is comparable to

|a+
n+1 − a−

n+1|. Since a+
n+1 and |a−

n+1| are comparable to |ϕ−1(zn+1)|, this implies
that |ϕ−1(z)| ≥ δ|ϕ−1(zn+1)| for some δ > 0 and all z ∈ Dn ∪ {zn−1}. Similarly,
for z ∈ γn ⊂ ∂Dn, by conditions (ii) and (iii),

ε ≤ ω(ϕ−1(z), I+
n ,H) ≤ 1

π
arg

(
ϕ−1(z)− a+

n

ϕ−1(z)

)

,

or

ε ≤ ω(ϕ−1(z), I−
n ,H) ≤ 1

π
arg

(
ϕ−1(z)

ϕ−1(z)− a−
n

)

.

Since a+
n and |a−

n | are comparable to |ϕ−1(zn)|,

|ϕ−1(z)| ≤ 1

δ
|ϕ−1(zn)|,
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which must then hold for all z ∈ Dn, since ϕ−1(γn) is a crosscut of H. Likewise
for z = zn−1

|ϕ−1(zn−1)| ≤ 1

δ
|ϕ−1(zn)|,

and so for all z ∈ Dn ∪ {zn−1}

δ2|ϕ−1(zn)| ≤ δ|ϕ−1(zn+1)| ≤ |ϕ−1(z)| ≤ 1

δ
|ϕ−1(zn)|.

��

Lemma 3.6. There are constants 0 < c1 < c2 < ∞ depending on ε but not on n
such that

c1n < log
1

|ϕ−1(zn)| < c2n. (3.12)

Proof. By (3.9)

∣
∣
∣
∣
ϕ−1(zn−1)

ϕ−1(zn)

∣
∣
∣
∣ ≤ 1

δ
,

and hence

log

∣
∣
∣
∣
ϕ−1(z0)

ϕ−1(zn)

∣
∣
∣
∣ ≤ n log

1

δ
.

For the reverse inequality, recall that ϕ−1(zn) lies in a cone at 0, so that Im ϕ−1(zn)

is comparable to |ϕ−1(zn)| and also is comparable to a+
n . Since

ε ≤ ω(ϕ−1(zn), [a+
n+1, a

+
n ],H) = 1

π
arg

(
ϕ−1(z)− a+

n

ϕ−1(z)− a+
n+1

)

,

there is a λ < 1, depending only on ε such that

a+
n+1 ≤ λa+

n .

Thus

|ϕ−1(zn)| ≤ C1 Im ϕ−1(zn) ≤ C2a
+
n ≤ C3λ

n,

and so

log

∣
∣
∣
∣

C3

ϕ−1(zn)

∣
∣
∣
∣ ≥ n log

1

λ
.

��
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Proof of Theorem 2.2 (continued). By Lemmas 3.5 and 3.6, the symmetric differ-
ence A of the sets H ∩ {|z| < 1} and ϕ−1(�1) lies in H ∩ {c1 < |z| < c2}, where
0 < c1 < c2 < ∞ depend only on ε but not on ϕ (i.e., ζ ). Hence,

∣
∣
∣
∣

∫

A

log
1

|z| |ϕ
′(z)|2dxdy

∣
∣
∣
∣ ≤ c3

∫

A

|ϕ′(z)|2dxdy ≤ c3|D| < ∞,

and, therefore, (3.8) is equivalent to

sup
ϕ

∫

ϕ−1(�1)

log
1

|z| |ϕ
′(z)|2dxdy < ∞. (3.13)

We apply Lemmas 3.5 and 3.6 again to conclude that the ratio

∫
ϕ−1(�1)

log
1

|z| |ϕ
′(z)|2dxdy

∑∞
n=1 n

∫
ϕ−1(Dn)

|ϕ′(z)|2dxdy

is bounded below and above by constants depending only on ε. This implies that
(3.13) is equivalent to

sup
ϕ

∞∑

n=1

n

∫

ϕ−1(Dn)

|ϕ′(z)|2dxdy = sup
ϕ

∞∑

n=1

n |Dn| = sup
ϕ

∞∑

n=1

|�n| < ∞.

��

Remark 3.7. It is quite easy to extend Theorem 2.2 to finitely connected planar
domains D. We will limit ourselves to a very sketchy outline of the argument.
Using the remark immediately following Lemma 3.3, we can choose a compact
subsetK ofD such that each component ofD \K is doubly connected, and apply
Theorem 2.2 to each component. Green’s function can also be constructed onD\B
by first using the Riemann mapping theorem, once for each boundary component to
map to a region� bounded by analytic curves. Then the Riemann surface “double”,
call it R, is formed by attaching two copies of � \ B along ∂�. If a ∈ � \ B and
if a∗ is the corresponding point on the second copy, then Green’s function equals
gR(z, a)+gR(z, a∗) as before, where gR is the classical Dirichlet Green’s function
for the Riemann surfaceR. One could leave the statement of the result and its proof
as is, using the analytic language but it is possible to give a probabilistic interpreta-
tion of the argument. First, one can construct a Brownian motion onR using the fact
that R is an analytic manifold, i.e., for every point z in R, including the part where
the two leaves of R meet, one can find an analytic mapping of a neighborhood U
of z onto a disc. The inverse mapping of the usual Brownian motion on the disc,
appropriately time-changed, is a Brownian motion on U and its projection on �
is the reflected Brownian motion on a subset of �. The standard piecing-together
method then shows that the reflected Brownian motion on � is the projection of
the Brownian motion on R.
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Proof of Theorem 2.3. (i) As we mentioned previously, this part follows from
Theorem 2.5(i), whose proof will be given immediately after the proof of part (ii)
of this theorem.

(ii) One counterexample is the region

D = {(x, y) : x > 1 and |y| < e−x}.

It is easy to verify that D is a trap domain using Proposition 2.11. The proof that
D ∈ J1 is exactly like the proof in the example below. We include another counter-
example, though for two reasons: it is a bounded region, and the proof has perhaps
greater intuitive appeal for probabilists.

Our counterexample is a snake-like domain (see Fig 3.2).
Let

Ak = {(x, y) ∈ R
2 : 2−2k−1 < x < 2−2k, 0 ≤ y ≤ 1}, k ≥ 0,

Uk = {z = (x, y) ∈ R
2 : |z− (3 · 2−2k−3, 1)| > 2−2k−3,

|z− (9 · 2−2k−4, 1)| < 7 · 2−2k−4, y ≥ 1}, k ≥ 0, k even,
Uk = {z = (x, y) ∈ R

2 : |z− (3 · 2−2k−3, 0)| > 2−2k−3,

|z− (9 · 2−2k−4, 0)| < 7 · 2−2k−4, y ≤ 0}, k ≥ 0, k odd,

D =
⋃

k≥0

Ak ∪
⋃

k≥0

Uk,

B = B((3/4, 1/2), 1/8),

zk = (3 · 2−2k−2, 1/2), k ≥ 1,

Ck = {(x, y) ∈ R
2 : 2−2k−1 ≤ x ≤ 2−2k, y = 1/2}, k ≥ 1,

Fk = {(x, y) ∈ R
2 : 2−2k−1 ≤ x ≤ 2−2k, y = 1/4 or y = 3/4}, k ≥ 1,

Sk = inf{t ≥ 0 : Xt ∈ Ck}, k ≥ 1,

Tk = inf{t ≥ Sk : Xt ∈ Fk}, k ≥ 1.

Since the part ofD between the two line segments comprising Fk is a rectangle
whose the long side has length 1/2, it is easy to see that the distribution of Tk−Sk is

Fig. 3.2 Snake-like J1 domain
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the same as the distribution Q of the hitting time of {−1/4, 1/4} by the one-dimen-
sional Brownian motion starting from 0. By the strong Markov property of RBM
X on D, {Tk − Sk}k≥1 are i.i.d. with distribution Q. If the process Xt starts from
zk then it must go through the channels containing Cj and Fj for all j < k, before
hitting B. Then TB ≥ ∑k−1

j=1 Tj −Sj and this easily implies that supk E
xkTB = ∞.

One can also reach this conclusion using Theorem 2.2.
It remains to show that D ∈ J1. Let the two continuous curves comprising

∂D \ {(x, y) : 1/2 ≤ x ≤ 1, y = 0} be called γ1 and γ2 and let σ be the set of
points in D equidistant from γ1 and γ2. For x ∈ σ , let ρ(x) be the distance from x

to (3/4, 0) along σ . For x ∈ D \ σ , find the point y on σ which is closest to x and
set ρ(x) = ρ(y).

Consider any admissible set F ⊂ D with |F | < 1/8. Since α = 1, it is enough
to assume F is connected. Suppose ∂F does not touch one of the curves γ1 and γ2.
Let a = infx∈F ρ(x) and b = supx∈F ρ(x). Then the length of ∂F ∩D is bounded
below by c1(b − a) (this may be infinite) and |F | < c2(b − a). Next suppose ∂F
touches both γ1 and γ2. LetK be the connected part of ∂F ∩D for which we have
infx∈K ρ(x) = a. If x = (x1, x2) ∈ K with ρ(x) ≤ a + 1 then the length of K
is bounded below by c3x1 and |F | ≤ c4x1. We conclude that |F | is bounded by a
constant times the length of ∂F ∩D. It follows that D ∈ J1.

��
Proof of Theorem 2.5. (i) Suppose that D is a domain in J2,α for some α < 1/2
and has finite volume. By (2.4) there is a constant c > 0 such that

‖u‖1/α ≤ c (‖∇u‖2 + ‖u‖2) for u ∈ W 1,2(D). (3.14)

By Varopoulos’ theorem (see Theorem 2.4.2 in [D]), there is a constant c1 > 0 so
that

e−tpt (x, y) ≤ c1t
−µt for every t > 0 and x, y ∈ D∗,

where µ = (1 − 2α)−1 and pt (x, y) is the the transition density function of the
RBM X∗ on D∗ (see Section 3.1). In particular, pt (x, y) is a bounded function on
D∗ ×D∗ for every t > 0. Since D has finite volume and m(D∗ \D) = 0,

∫

D

∫

D

pt (x, y)
2dxdy =

∫

D

p2t (x, x)dx < ∞,

that is, the semigroup Pt ofX∗ is a Hilbert-Schmidt operator. So Pt is a self-adjoint
compact operator inL2(D, dx) (see Problem 5.1.4 of [Fr]) and hencePt , and there-
fore the Neumann Laplacian inD, has a discrete spectrum (see Problems 6.7.4 and
6.7.5 in [Fr]). Now it follows from the argument on p. 6 of [BB] or Theorem 2.4 in
[BH] that there are constants c2, c3 > 0 such that

sup
x,y∈D

∣
∣
∣
∣pt (x, y)− 1

Vol(D)

∣
∣
∣
∣ ≤ c2 e

−c3t for t ≥ 1.

Therefore, by Proposition 1.4, the parabolic Harnack principle holds on D.
(ii) As we observed previously, this part follows from Theorem 2.3(ii). ��
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Proof of Theorem 2.6. The following proof might be known to experts. However
for reader’s convenience, we spell out the details.

It is well known (see Theorem 5.4 in [A]) that the Sobolev spaceW 1,p(Rd) can
be continuously embedded into space Lq(Rd) for any p ≤ q ≤ dp/(d − p) when
p < d and for any p ≤ q < ∞ when p = d; that is, there is a constant c > 0 such
that

‖u‖q ≤ c
(‖∇u‖p + ‖u‖p

)
:= c ‖u‖1,p for u ∈ W 1,p(Rd). (3.15)

(i) IfD is aW 1,1-extension domain with finite volume, there is a continuous lin-
ear map T : W 1,1(D) → W 1,1(Rd) such that T u = u a.e. onD for u ∈ W 1,1(D).
It follows then from (3.15) with p = 1 and q = d/(d − 1) that for u ∈ W 1,1(D),

‖u‖q ≤ ‖T u‖q ≤ c1 ‖T u‖1,1 ≤ c2 ‖u‖1,1.

Now by (2.3), we conclude D is a domain in Jd−1
d

.

(ii) IfD is aW 1,2-extension domain with finite volume, there is a continuous lin-
ear map T : W 1,2(D) → W 1,2(Rd) such that T u = u a.e. onD for u ∈ W 1,2(D).
When d ≥ 3, by (3.15) with p = 2 and q = 2d/(d − 2), we have

‖u‖q ≤ ‖T u‖q ≤ c3 ‖T u‖1,2 ≤ c4 ‖u‖1,2 for u ∈ W 1,2(D).

By (2.4), D is a J2,α-domain with α = d−2
2d and so it is a non-trap domain. When

d = 2, the same argument shows that

‖u‖q ≤ c5 ‖u‖1,2 for u ∈ W 1,2(D)

holds for every q < ∞. By (2.4) D is in class J2,α for any α > 0. ��

Proof of Theorem 2.9. (i) Let Xt be the reflected Brownian motion in D and set
B = F−1(B(0, r0)) for r0 > 0 such that B(0, 2r0) ⊂ F(D). We will estimate
E
xTB . The estimate is trivial for x ∈ B so assume that x ∈ D \ B and let Ut =

|F(Xt∧TB )|. Our assumptions on the mapping F , the domainD and the vector field
v easily imply, via the Itô formula, that Ut satisfies

Ut∧TB − U0 =
∫ t∧TB

0
a(Xs)dWs +

∫ t∧TB

0
b(Xs)ds + Vt∧TB ,

whereWt is a Brownian motion,Vt is a non-increasing process—a singular drift cor-
responding to the reflection on the boundary, and supx∈D(|a(x)|, |a(x)|−1, |b(x)|)
= c1 < ∞, where the constant c1 depends only on the bounds for the derivatives
of F in D \ B. Let c(t) = ∫ t

0 a(Xs)
−2ds and let Zt = Uc(t) be the corresponding

time change of Ut . Note that for some constants c2, c3 ∈ (0,∞) and all t ≤ TB ,
c2t ≤ c(t) ≤ c3t . Let T0 = c−1(TB). We obtain

Zt∧T0 − Z0 = W̃t∧T0 +
∫ t∧T0

0
b̃(Xs)ds + Ṽt∧T0 ,
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where W̃t is a Brownian motion, |̃b(x)| is bounded by a constant c4 < ∞ and Ṽt is
non-increasing. Let r1 be the diameter of F(D). For some p1 > 0,

P(W̃t+1 − W̃t < −c4 − r1 − 1) ≥ p1,

so for any t ≥ 0,

P(Z(t+1)∧T0 = r0 | Zt) ≥ p1.

Let T ′ = inf{t : Zt = r0}. By the Markov property applied at times k, for all
x ∈ D \ B, P(T ′ > k | X0 = x) ≤ c5(1 − p1)

k , and, therefore,

P(TB > c3k | X0 = x) ≤ c5(1 − p1)
k, (3.16)

where c5 < ∞ depends only on the bound c1. Hence we have supx E
xTB ≤ c6 <

∞.
(ii) Let D be a twisted starlike domain and let F be the corresponding func-

tion. Find r0 > 0 such that B(0, 2r0) ⊂ F(D) and let B = F−1(B(0, r0)) and
B1 = F−1(B(0, 3r0/2)). It is easy to see that there exists a monotone sequence
of starlike domains D̃k ↑ F(D) with C2 boundaries such that D̃k ⊃ B(0, 2r0)
for every k ≥ 1. Let Dk = F−1(D̃k) and note that if we take the vector field of
reflection vk(x) on ∂Dk to be the normal vector field n(x) then the assumptions of
part (i) of the theorem are satisfied for Dk and vk . Fix any x ∈ D \ B1. When k
is large enough, x ∈ Dk . Let Xkt be the reflected Brownian motion in Dk defined
as in (2.6), with Xk0 = x. Since Dk ↑ D, by Theorem 2 in [BC], the processes Xkt
converge weakly to Xt with X0 = x, the reflected Brownian motion in D starting
from x. Recall that the estimates obtained in the first part of the proof depend only
on the bounds for the derivatives of F and we can use the same mapping F for each
Dk . Hence, by (3.16),

P(T X
k

B > c3k | Xk0 = xk) ≤ c5(1 − p1)
k,

where c3 and c5 do not depend on k or x. Here and in the sequel, whenever there is
a danger of confusion, we use T ZB to denote the first hitting time of B by a process
Z; that is, T ZB := inf{t ≥ 0 : Zt ∈ B}. The last estimate implies that

sup
k≥1

sup
x∈Dk

E
x
[
T
Xk
B

]
< ∞

and so supx∈D E
x
[
T XB1

]
< ∞.

Proof of Proposition 2.11. Let σ = {(x, y) ∈ R
2 : x ≥ 2, y = 0} and z0 =

(x0, 0) = (2, 0). We will define zn = (xn, 0) and cuts γn inductively. If α < ∞
denotes the Lipschitz constant of the function f defining the horn domain Df ,
i.e., |f (x) − f (y)| ≤ α|x − y| then we let xn = xn−1 + f (xn−1)/(2α) and
γn = {(x, y) ∈ R

2 : x = xn, |y| < f (xn)}. It is easy to check (we leave it to the
reader) that {γn}n≥1 ∪ σ divide Df into hyperbolic blocks. Note that 1

2f (xn−1) ≤
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f (x) ≤ 3
2f (xn−1) for x ∈ [xn−1, xn] and so there are constants 0 < c1 < c2 < ∞

depending only on α such that for all n ≥ 1,

c1 <

∫ xn

xn−1

1

f (x)
dx < c2.

Hence there are constants 0 < c3 < c4 < ∞ depending only on α and f (1), such
that for large n and y ∈ [xn, xn+1],

c3n <

∫ y

1

1

f (x)
dx < c4n.

Since the area of Dn is
∫ xn+1
xn

2f (x)dx,

c3/4 <

∫ xm+1
1

∫ y
1

1
f (x)

dx f (y)dy
∑m
n=1 n|Dn|

< c4,

for large m. This proves that for the prime end representing the point at infinity,
the condition

∑
n≥1 n|Dn| < ∞ is equivalent to

∫∞
1

∫ y
1

1
f (x)

dxf (y)dy < ∞. We
omit a tedious but routine argument showing that if

∑
n≥1 n|Dn| < ∞ is satisfied

for the prime end at infinity then the supremum of
∑
n≥1 n|Dn| over all prime ends

is finite. ��
Proof of Proposition 2.12. (i) It is well known and not hard to verify that the snow-
flake domain is a John domain and an (ε, δ)-domain. One can use either Corollary
2.7 or 2.8 to conclude that the snowflake is not a trap domain.

(ii) We have mentioned in Section 2 that proving that a domain belongs to a
class Jα is cumbersome when domain is not smooth. In view of part (iii), part (ii) of
this proposition is meant only as an illustration of Theorem 2.3 so we will leave our
claim at the heuristic level. Under the assumptions of part (ii), the opening between
two adjacent triangles in the construction of the modified snowflake Df is of size
aβ , where a is the side length of the smaller triangle and β < 2. The area behind
this opening is of order a2 so if we take the admissible set F to be the set cut off
by the line segment closing the opening, we obtain |F |β/2 ≤ c1 a

β = c1 S(∂iF ).
We see that Df ⊂ Jβ/2 and Theorem 2.3(i) implies that Df is not a trap domain.

(iii) Consider a prime end ζ in Df which is accessible only by going through
an infinite sequence of triangles comprising the domain. Consider two adjacent tri-
angles T1 and T2 in this sequence, with the side length of the smaller triangle equal
to a. Let the size of the opening between the triangles be exp(−a−γ ) and let y be
its center. Let ρ1

m = {z ∈ T1 : |y− z| = 2−m} and ρ2
m = {z ∈ T2 : |y− z| = 2−m},

and limit the range of m by exp(−a−γ ) ≤ 2−m ≤ a/8. Let σ be the polygonal
line with vertices at the center ofDf and consecutive centers of openings between
the triangles in the sequence leading to ζ . It is easy to see that the union of σ
and all curves ρ1

m and ρ2
m corresponding to all pairs of adjacent triangles in the

sequence, divides the domain into hyperbolic blocks. Relabel the family of all ρ1
m’s

and ρ2
m’s as γn’s and recall the definition of domainsDn from Section 2.1. We have

to estimate
∑
n n|Dn|.
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Consider Dn whose boundary contains ρ1
m or ρ2

m, corresponding to a triangle
with side length a. The area of this set Dn is at most c1a

2 and the number of such
domains Dn corresponding to a single triangle is bounded by c2a

−γ . Hence, the
portion of

∑
n n|Dn| corresponding to the triangle with side length a is bounded

by c1a
2c2a

−γ = c3a
2−γ . The sequence of triangle diameters ak along σ is geo-

metric so
∑
n n|Dn| ≤ ∑

k c3a
2−γ
k is finite if γ < 2. A similar argument shows

that
∑
n n|Dn| = ∞ for γ > 2. We omit a tedious but routine argument extending

the estimates to prime ends which correspond to boundary points accessible via a
finite sequence of triangles.

��

Our next proof involves the notion of the quasi-hyperbolic distance. This con-
cept was used implicitly in Theorem 2.2 and its proof but this is the first time we will
use it in an explicit way, because we want to quote a result of Smith and Stegenga
([SS]). The quasi-hyperbolic distance between points x, y ∈ D is defined as

h(x, y) = inf
�

∫

�

ds

dist(�(s), ∂D)
,

where the infimum is taken over all rectifiable arcs �(s) ⊂ D, joining x and y. The
quasi-hyperbolic distance is comparable to the standard hyperbolic distance. See
[P] for this fact and other information about the quasi-hyperbolic distance in the
two-dimensional setting.

Proof of Proposition 1.4 (iii). We will use one of the examples from [SS] so, for
reader’s convenience, we will describe the domain using the same notation as in
[SS]. Let Rn denote the disc B(xn, cn) with center xn ∈ R

2 and radius cn > 0, for
n ≥ 0. We take x0 = 0, c0 = 1, and assume that 1 < |xn| < 2 for n ≥ 1, and that
the discs Rn are disjoint. For n ≥ 1 let x′

n = xn/|xn| and bn = |xn − x′
n| − cn.

Suppose that an ∈ (0, cn) and for n ≥ 1 let Cn = ⋃
0≤|x−x′

n|≤bn B(x, an). Assume

that Cn ∪ Rn are disjoint and let D = ⋃∞
n=0(Rn ∪ Cn), where C0 = ∅.

We will assume that bn/cn → 0 and an/cn → 0 as n → ∞ and that D has
finite volume. Hence, the following condition needed to apply a result from [SS]
holds: anbn/c2

n → 0.
Fix some k ≥ 1 and let ζk be the prime end corresponding to the point in

∂Rk ∩ ∂D that lies on the line passing through x0 and xk . Let Dn be hyperbolic
blocks corresponding to ζk as in Theorem 2.2. The largest of setsDn insideRk , say
Dn0 , will have area comparable to the area of Rk , and it is easy to see that Dn’s
can be chosen so that |Dn+1|/|Dn| < c < 1 for n ≥ n0 and |Dn−1|/|Dn| < c < 1
for those n ≤ n0 with Dn ⊂ Rk . This implies that

∑∞
n=1 n|Dn| is comparable to

1+n0|Dn0 | and hence to 1+n0|Rk|, since the sum of n|Dn| over thoseDn that are
not in Rk is comparable to 1. Recall that zn is the intersection point of γn and σ in
the definition of hyperbolic blocks forD. It is clear from our proof of Theorem 2.2
that n0 is comparable to the quasi-hyperbolic distance h(x0, zn0) between x0 and
zn0 , and it is easy to see that this distance is comparable to h(x0, xk), so

∑
n n|Dn|

is comparable to 1 + h(x0, xk)|Rk|. According to Theorem 2.2, D is not a trap
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domain if supk h(x0, xk)|Rk| < ∞ (other prime ends can be analyzed in a similar
way).

Theorem 15(ii) of [SS] says that the embedding W 1,2(D) → L2(D, dx) is
compact if and only if limk→∞ h(x0, xk)|Rk| = 0. Hence we conclude by Lemma
3.1 that the 1-resolvent R1 of the Neumann Laplacian in D is compact if and only
if

lim
k→∞

h(x0, xk)|Rk| = 0.

It follows that by a suitable choice of an, bn and cn, we can construct a non-trap
domain where the 1-resolvent of the Neumann Laplacian is not compact. ��
Remark 3.8. The quasi-hyperbolic distance can also be used to reinterpret Propo-
sition 2.11 since for Lipschitz functions f there are constants c1 and c2 so that for
x ∈ R ⊂ C with x > 2,

c1 ≤ f (x)

dist(x, ∂Df )
≤ c2.

This implies
∫ y

2 1/f (x)dx is comparable to the hyperbolic distance from 2 to y > 2
inDf . Note that the half-line (1,∞) is a hyperbolic geodesic inDf by symmetry.
Thus a horn domain Df is non-trap if and only if

∫ ∞

2
h(x)f (x)dx =

∫ ∞

2
|Df ∩ {z : Re z > x}|dh(x) < ∞,

where h(x) is the hyperbolic distance from 2 to x.

Proof of Proposition 2.13. Hyperbolic blocks for the origin in the spiral domain are
formed by letting σ be a curve running down the “middle” of the channel, and using
cross cuts that divide the channel into approximate squares. Consider the portion
of the channel bounded by the curve r = θ−p with 2π(n− 1) ≤ θ ≤ 2π(n+ 1).
Then σ makes one “loop” around the origin within this portion of the channel. The
width of this channel is comparable to n−(p+1) and the length of this portion of σ
is comparable to n−p, so that there are n approximate squares in this loop. If Cj is
one of the cross cuts in this channel, then the component�j of Sp \Cj which does
not contain z0 has area comparable to n−2p. Thus the total contribution to (2.1)
from this portion of the channel is n/n2p, so that (2.1) is comparable to

∑ 1

n2p−1 .

Thus Sp is not a trap domain if p ≤ 1, and (2.1) is finite for p > 1. We leave the
verification that (2.1) is uniformly bounded for all other boundary points if p > 1
to the reader. We also remark that when p = 1, the same reasoning as in the last
paragraph of the proof of Theorem 2.3 shows that Sp ∈ J1. ��
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