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CONVERGENCE OF A VARIANT OF THE ZIPPER ALGORITHM
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Abstract. In the early 1980s an elementary algorithm for computing conformal maps was
discovered by R. Kühnau and the first author. The algorithm is fast and accurate, but convergence
was not known. Given points z0, . . . , zn in the plane, the algorithm computes an explicit conformal
map of the unit disk onto a region bounded by a Jordan curve γ with z0, . . . , zn ∈ γ. We prove
convergence for Jordan regions in the sense of uniformly close boundaries and give corresponding
uniform estimates on the closed region and the closed disc for the mapping functions and their
inverses. Improved estimates are obtained if the data points lie on a C1 curve or a K-quasicircle.
The algorithm was discovered as an approximate method for conformal welding; however, it can also
be viewed as a discretization of the Loewner differential equation.
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Introduction. Conformal maps have applications to problems in physics, engi-
neering, and mathematics, but how do you find a conformal map, say, of the upper-half
plane H to a complicated region? Rather few maps can be given explicitly by hand,
so that a computer must be used to find the map approximately. One reasonable way
to describe a region numerically is to give a large number of points on the boundary
(see Figure 1). One way to say that a computed map defined on H is “close” to a
map to the region is to require that the boundary of the image be uniformly close to
the polygonal curve through the data points. Indeed, the only information we may
have about the boundary of a region is this collection of data points.

In the early 1980s an elementary algorithm was discovered independently by
Kühnau [K] and the first author. The algorithm is fast and accurate, but conver-
gence was not known. The purpose of this paper is to prove convergence in the sense
of uniformly close boundaries and discuss related numerical issues. In many applica-
tions both the conformal map and its inverse are required. One important aspect of
the algorithm that sets it apart from others is that this algorithm finds both maps
simultaneously.

The algorithm can be viewed as an approximate solution to a conformal welding
problem or as a discretization of the Loewner differential equation. The approxima-
tion to the conformal map is obtained as a composition of conformal maps onto slit
half planes. Osculation methods also approximate a conformal map by repeated com-
position of simple maps. See Henrici [H] for a discussion of osculation methods and
uniform convergence on compact sets. The algorithms of the present article follow the
boundary of a given region much more closely than, for instance, the Koebe algorithm
and give uniform convergence on all of H rather than just on compact subsets. Uni-
form convergence on the closure of the region is particularly important in applications
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Fig. 1.

that involve boundary values of functions defined on the region. It is possible to use
the techniques of this paper to prove that a version of the algorithm is an osculation
method for smooth curves, and therefore by the results in [H] repeated applications
converge, in the weaker sense, uniformly on compact subsets. However, prior to this
article, even a proof that these methods satisfied the osculation family conditions was
not known.

Depending on the type of slit (hyperbolic geodesic, straight line segment, or cir-
cular arc) we actually obtain different versions of this algorithm. These are described
in section 1. We then focus our attention on the “geodesic algorithm” and study its
behavior in different situations. The easiest case is discussed in section 2: If the data
points z0, z1, . . . are the consecutive contact points of a chain of disjoint discs (see
Figures 7 and 8 below), then a simple but very useful reinterpretation of the algo-
rithm, together with the hyperbolic convexity of discs in simply connected domains
(Jørgensen’s theorem), implies that the curve produced by the algorithm is confined
to the chain of discs (Theorem 2.2). One consequence is that for any bounded simply
connected domain Ω, the geodesic algorithm can be used to compute a conformal map
to a Jordan region Ωc (“c” is for “computed”) so that the Hausdorff distance between
∂Ω and ∂Ωc is as small as desired (Theorem 2.4).

In section 3, we describe an extension of the ideas of section 2 that applies to
a variety of domains such as smooth domains or quasiconformal discs with small
constants, with better estimates. For instance, if ∂Ω is a C1 curve, then the geodesic
algorithm can be used to compute a conformal map to a Jordan region Ωc with
∂Ωc ∈ C1 so that the boundaries are uniformly close and so that the unit tangent
vectors are uniformly close (Theorem 3.10). The heart of the convergence proof in
these cases comprises the technical “self-improvement” in Lemmas 3.5 and 3.6. In
fact, this approach constituted our first convergence proof.

In sections 4 and 5, we show how estimates on the distance between boundaries
of Jordan regions give estimates for the uniform distance between the corresponding
conformal maps to D, and we apply these estimates to obtain bounds for the conver-
gence of the conformal maps produced by the algorithm. We summarize some of our
results as follows: If ∂Ω is contained in a chain of discs of radius ≤ ε with the data
points being the contact points of the discs, or if ∂Ω is a K-quasicircle with K close
to one and the data points are consecutive points on ∂Ω of distance comparable to ε,
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CONVERGENCE OF A VARIANT OF THE ZIPPER ALGORITHM 2579

then the Hausdorff distance between ∂Ω and the boundary of the domain computed
by the geodesic algorithm, ∂Ωc, is at most ε. Moreover, the conformal maps ϕ,ϕc

onto D satisfy

sup
Ω∩Ωc

|ϕ− ϕc| ≤ Cεp,

where any p < 1/2 works in the disc-chain case, and p is close to one if K is close to
one. In the case of quasicircles, we also have

sup
D

|ϕ−1 − ϕ−1
c | ≤ Cεp

with p close to one. Better estimates are obtained for regions bounded by smoother
Jordan curves.

Section 6 contains a brief discussion of numerical results. The appendix has a
simple self-contained proof of Jørgensen’s theorem.

In a forthcoming paper we plan to address the convergence of the slit and zipper
variants of the algorithm. The basic conformal maps and their inverses used in the
geodesic algorithm are given in terms of linear fractional transformations, squares,
and square roots. The slit and zipper algorithms use elementary maps whose inverses
cannot be written in terms of elementary maps. In that paper we will discuss how
to divide the plane into four regions so that Newton’s method applied to variants of
the inverses will converge quadratically in each region. Newton’s method converges
so rapidly that it virtually provides a formula for the inverses.

1. Conformal mapping algorithms. The geodesic algorithm. The most
elementary version of the conformal mapping algorithm is based on the simple map
fa : H \ γ −→ H, where γ is an arc of a circle from 0 to a ∈ H which is orthogonal to
R at 0.

This map can be realized by a composition of a linear fractional transformation,
the square, and the square root map, as illustrated in Figure 2. The orthogonal circle

H \ γ H

γ
a

b

c−c

ic

c20

0

0

0

fa

z

1 − z/b

z2 + c2

√
z

Fig. 2. The basic map fa.
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Fig. 3. The geodesic algorithm.

also meets R orthogonally at a point b = |a|2/Re a and is illustrated by a dashed
curve in Figure 2. In Figure 2, c = |a|2/ Im a. Observe that the arc γ is opened to
two adjacent intervals at 0 with a, the tip of γ, mapped to 0. The inverse f−1

a can be
easily found by composing the inverses of these elementary maps in the reverse order.

Now suppose that z0, z1, . . . , zn are points in the plane. The basic maps fa can
be used to compute a conformal map of H onto a region Ωc bounded by a Jordan
curve which passes through the data points, as illustrated in Figure 3.

The complement in the extended plane of the line segment from z0 to z1 can be
mapped onto H with the map

ϕ1(z) = i

√
z − z1

z − z0
,

ϕ1(z1) = 0, and ϕ1(z0) = ∞. Set ζ2 = ϕ1(z2) and ϕ2 = fζ2 . Repeating this process,
define

ζk = ϕk−1 ◦ ϕk−2 ◦ · · · ◦ ϕ1(zk)

and

ϕk = fζk

for k = 2, . . . , n. Finally, map a half disc to H by letting

ζn+1 = ϕn ◦ · · · ◦ ϕ1(z0) ∈ R
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be the image of z0, and set

ϕn+1 = ±
(

z

1 − z/ζn+1

)2

.

The + sign is chosen in the definition of ϕn+1 if the data points have a negative
winding number (clockwise) around an interior point of ∂Ω, and otherwise the − sign
is chosen. Set

ϕ = ϕn+1 ◦ ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1

and

ϕ−1 = ϕ−1
1 ◦ ϕ−1

2 ◦ · · · ◦ ϕ−1
n+1.

Then ϕ−1 is a conformal map of H onto a region Ωc such that zj ∈ ∂Ωc, j =
0, . . . , n. The portion γj of ∂Ωc between zj and zj+1 is the image of the arc of a circle
in the upper-half plane by the analytic map ϕ−1

1 ◦ · · · ◦ ϕ−1
j . In more picturesque

language, after applying ϕ1, we grab the ends of the displayed horizontal line segment
and pull, splitting apart or unzipping the curve at 0. The remaining data points move
down until they hit 0, and then each splits into two points, one on each side of 0,
moving further apart as we continue to pull.

As an aside, we make a few comments. As mentioned, ∂Ωc is piecewise analytic. A
curve is called C1 if the arc length parameterization has a continuous first derivative.
In other words, the direction of the unit tangent vector is continuous. It is easy to
see that ∂Ωc is also C1 since the inverse of the basic map fa in Figure 2 doubles
angles at 0 and halves angles at ±c. In fact, it is also C

3
2 (see Proposition 3.12). If

the data points {zj} lie on the boundary of a given region ∂Ω, the analyticity of ∂Ωc

also allows us in many situations (see Proposition 2.5 and Corollary 3.9) to extend
ϕc analytically across ∂Ωc so that the extended map is a conformal map of Ω onto
a region with boundary very close to ∂D. Note also that ϕ is a conformal map of
the complement of Ωc, C

∗ \ Ωc, onto the lower-half plane, C \ H, where C
∗ denotes

the extended plane. Simply follow the unshaded region in H in Figure 3. Finally,
we remark that it is easier to use geodesic arcs in the right-half plane instead of in
the upper-half plane when coding the algorithm because of the usual convention that
−π

2 < arg
√
z ≤ π

2 .
The slit algorithm. Given a region Ω, we can select boundary points z0, . . . , zn

on ∂Ω and apply the geodesic algorithm. We can view the circular arcs γ for the basic
maps fa as approximating the image of the boundary of Ω between 0 and a with a
circular arc at each stage. We can improve the approximation by using straight lines
instead of orthogonal arcs. So in the slit algorithm we replace the inverse of the maps
fa by conformal maps ga : H −→ H \ L, where L is a line segment from 0 to a.
Explicitly

ga(z) = C(z − p)p(z + 1 − p)1−p,

where p = arg a/π and C = |a|/pp(1 − p)1−p.
One way to see that ga is a conformal map is to note that as x traces the real line

from −∞ to +∞, ga(x) traces the boundary of H \L and ga(z) ∼ Cz for large z, and
then apply the argument principle. Another method would be to construct Re log ga
using harmonic measure, as in the first two pages of [GM]. As in the basic maps of the
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H

L

H \ L

p− 1 p 00

a

ga(z)

πp

Fig. 4. The slit maps.

geodesic algorithm, the line segment from 0 to a is opened to two adjacent intervals
on R by fa = g−1

a with fa(a) = 0 and fa(∞) = ∞. The map fa cannot be written
in terms of elementary functions, but an effective and rapid numerical inverse will be
described in a subsequent paper.

We note that, as in the geodesic algorithm, the boundary of the region Ωc com-
puted with the slit algorithm will be piecewise analytic. However, it will not be C1.
Indeed, if ga is the map illustrated by Figure 4, and if gb is another such map, then
gb ◦ ga forms a curve with angles 2πp and 2π(1 − p) on either side of the curve at
b = gb(0). Since analytic maps preserve angles, the boundary of the computed region
consists of analytic arcs with endpoints at the data points, and angles determined by
the basic maps. This will allow us to accurately compute conformal maps to regions
with (a finite number of) “corners” or “bends.”

The zipper algorithm. We can further improve the approximation by replacing
the linear slits with arcs of (nonorthogonal) circles. In this version we assume there
is an even number of boundary points, z0, z1, . . . , z2n+1. The first map is replaced by

ϕ1(z) =

√
(z − z2)(z1 − z0)

(z − z0)(z1 − z2)
,

which maps the complement in the extended plane of the circular arc through z0, z1, z2

onto H. At each subsequent stage, instead of pulling down one point ζk, we can find a
unique circular arc through 0 and the (images of) the next two data points ζ2k−1 and
ζ2k. By a linear fractional transformation 	a which preserves H, this arc is mapped
to a line segment (assuming the arc is not tangent to R at 0). See Figure 5.

The complement of this segment in H can then be mapped to H as described in
the slit algorithm, using g−1

d , where d = a/(1−a/b). The composition ha,c = g−1
d ◦ 	a

then maps the complement of the circular arc in H onto H. Thus at each stage we are
giving a “quadratic approximation” instead of a linear approximation to the (image
of) the boundary. The last map ϕn+1 is a conformal map of the intersection of a disc
with H where the boundary circular arc passes through 0, the image of z2n+1, and
the image of z0 by the composition ϕn ◦ · · · ◦ ϕ1. See Figure 6.

If the zipper algorithm is used to approximate the boundary of a region with
bends or angles at some boundary points, then better accuracy is obtained if the
bends occur only at even numbered vertices {z2n}, n 	= 0.

Conformal welding. The discovery of the slit algorithm by the first author came
from considering conformal weldings. (The simpler geodesic algorithm was discovered
later.) A decreasing continuous function h : [0,+∞) → (−∞, 0] with h(0) = 0 is
called a conformal welding if there is a conformal map f of H onto C \ γ, where γ is
a Jordan arc from 0 to ∞ such that f(x) = f(h(x)) for x ∈ [0,+∞). In other words,
the map f pastes the negative and positive real half lines together according to the
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Fig. 5. The circular slit maps.
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prescription h to form a curve. One way to approximate a conformal welding is to
prescribe the map h at finitely many points and then construct a conformal mapping
of H which identifies the associated intervals.

A related problem, which the first author considered in joint work with L. Car-
leson, is as follows: Given angles α1, α2, . . . , αn and 0 < x1 < x2 < · · · < xn, find
points yn < · · · < y1 < 0 so that there is a Schwarz–Christoffel map f of H onto a
region bounded by a polygonal arc tending to ∞ with angles αj , 2π−αj at the jth ver-
tex f(xj) = f(yj). This map welds the intervals [xj , xj+1] and [yj+1, yj ], j = 1, . . . , n.
Unfortunately, at the time the best Schwarz–Christoffel method was only fast enough
to do this problem with polygonal curves with up to 20 bends.

The basic maps ga can be used to compute the conformal maps of weldings.
Indeed, suppose y1 < 0 < x1, let a = x1/(x1−y1), and apply the map ga(z/(x1−y1)).
This map identifies the intervals [y1, 0] and [0, x1] by mapping them to the two “sides”
of a line segment L ⊂ H. Composing maps of this form will give a conformal map
ϕ : H → C \ γ such that ϕ([xj , xj+1]) = ϕ([yj+1, yj ]). The final intervals are welded
together using the map z2. The numerical computation of these maps is easily fast
enough to compose 105 basic maps, thereby giving an approximation to almost any
conformal welding. Conversely, given a Jordan arc γ connecting 0 to ∞, the associated
welding can be found approximately by using the slit algorithm to approximate the
conformal map from H to the complement of γ.

From this point of view, the slit or the geodesic algorithms find the conformal
welding of a curve (approximately). From the point of view of increasing the boundary
via a small curve γj from zj to zj+1, the algorithms are discrete solutions of Loewner’s
differential equation.

The idea of closing up such a region using a map of the form ϕn+1 was suggested
by L. Carleson, for which we thank him.

2. Disc-chains. The geodesic algorithm can be applied to any sequence of data
points z0, z1, . . . , zn, unless the points are out of order in the sense that a data point
zj belongs to the geodesic from zk−1 to zk for some k < j. In this section we
will give a simple condition on the data points z0, z1, . . . , zn which is sufficient to
guarantee that the curve computed by the geodesic algorithm is close to the polygon
with vertices {zj}.

Definition 2.1. A disc-chain D0, D1, . . . , Dn is a sequence of pairwise disjoint
open discs such that ∂Dj is tangent to ∂Dj+1 for j = 0, . . . , n−1. A closed disc-chain
is a disc-chain such that ∂Dn is tangent to ∂D0.

Any closed Jordan polygon P , for example, can be covered by (the closure of) a
closed disc-chain with arbitrarily small radii and centers on P (see Figure 7). There
are several ways to accomplish this, but one straightforward method is the following:
Given ε > 0, find pairwise disjoint discs {Bj} centered at each vertex and of radius
less than ε so that Bj ∩ P is connected for each j. Then

P \
⋃
j

Bj =
⋃

Lk,

where {Lk} are pairwise disjoint closed line segments. Cover each Lk with a disc-chain
centered on Lk tangent to the corresponding Bj at the ends, and radius less than half
the distance to any other Li, and less than ε.

Another method for constructing a disc-chain is to draw a Jordan curve using only
line segments of length 2−n parallel to the coordinate axes. The circles with radius
2−n−1 centered at the endpoints of these segments form a disc-chain. The points of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF A VARIANT OF THE ZIPPER ALGORITHM 2585

Fig. 7. Disc-chain covering a polygon.

tangency are the midpoints of the line segments. Such curves arise from the Whitney
decomposition of a simply connected domain, which can be described as follows (see
also [GM, p. 21]). If Q is a square, let 2Q denote the square with the same center and
twice the diameter. Suppose Ω is a simply connected domain contained in the unit
square. Divide the unit square into four equal squares.

(a) Discard any square which does not intersect Ω.
(b) If Q is one of the remaining squares for which 2Q 	⊂ Ω, then divide Q into

four equal squares.
(c) Repeat (a), (b), and (c) for the squares obtained in (b).

If this process is repeated ad infinitum, we obtain a decomposition of Ω into squares
with the property that for each such square, the distance of the square to the boundary
of Ω is comparable to the side length of the square: 2Q ⊂ Ω and 5Q ∩ ∂Ω 	= ∅. Fix
n and z0 ∈ Ω with dist(z0, ∂Ω) > 2−n. Let Un be the union of all squares Q in the
Whitney decomposition with side length at least 2−n and let Ωn be the component of
the interior of Un containing z0. Then ∂Ωn is a polygonal Jordan curve consisting of
segments of length 2−n. The discs of radius 2−n−1 centered at the endpoints of these
segments form a disc-chain and the points of tangency are the midpoints of these
segments.

Yet another method for constructing a disc-chain would be to start with a hexag-
onal grid of tangent discs, all of the same size, and then select a sequence of these
discs which form a disc-chain. The boundary circles of a circle packing of a simply
connected domain can also be used to form a disc-chain. See, for example, any of the
pictures in Stephenson [SK].

If D0, D1, . . . , Dn is a closed disc-chain, set

zj = ∂Dj ∩ ∂Dj+1

for j = 0, . . . , n, where Dn+1 ≡ D0.
Theorem 2.2. If D0, D1, . . . , Dn is a closed disc-chain, then the geodesic al-

gorithm applied to the data z0, z1, . . . , zn produces a conformal map ϕ−1
c from the

upper-half plane H to a region bounded by a C1 and piecewise analytic Jordan curve
γ with

γ ⊂
n⋃
0

(Dj ∪ zj).

Proof. An arc of a circle which is orthogonal to R is a hyperbolic geodesic in
the upper-half plane H. Let γj denote the portion of the computed boundary, ∂Ωc,
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between zj and zj+1. Since hyperbolic geodesics are preserved by conformal maps, γj
is a hyperbolic geodesic in

C
∗ \

j−1⋃
k=0

γk.

For this reason, we call the algorithm the “geodesic” algorithm.
Using the notation of Figure 2, each map f−1

a is analytic across R \ {±c}, where

f−1
a (±c) = 0, and f−1

a is approximated by a square root near ±c. If f−1
b is another

basic map, then f−1
b is analytic and asymptotic to a multiple of z2 near 0. Thus

f−1
b ◦ f−1

a preserves angles at ±c. The geodesic γj then is an analytic arc which
meets γj−1 at zj with angle π. Thus the computed boundary ∂Ω is C1 and piecewise
analytic. The first arc γ0 is a chord of D0 and hence not tangent to ∂D0. Since the
angle at z1 between γ0 and γ1 is π, γ1 must enter D1, and so by Jørgensen’s theorem
(see Theorem A.1 in the appendix)

γ1 ⊂ D1,

and γ1 is not tangent to ∂D1. By induction

γj ⊂ Dj ,

j = 0, 1, . . . , n.
Disc-chains can be used to approximate the boundary of an arbitrary simply

connected domain.
Lemma 2.3. Suppose that Ω is a bounded simply connected domain. If ε > 0,

then there is a disc-chain D0, . . . , Dn so that the radius of each Dj is at most ε and
∂Ω is contained in an ε-neighborhood of

⋃
Dj.

Proof. We may suppose that Ω is contained in the unit square. Then for n
sufficiently large, the disc-chain constructed using the Whitney squares with side
length at least 2−n, as described above, satisfies the conclusions of Lemma 2.3.

The Hausdorff distance dH in a metric ρ between two sets A and B is the smallest
number d such that every point of A is within ρ-distance d of B, and every point of
B is within ρ-distance d of A. The ρ-metrics we will consider in this article are the
Euclidean and spherical metrics.

A consequence is the following theorem.
Theorem 2.4. If Ω is a bounded simply connected domain, then, for any ε > 0,

the geodesic algorithm can be used to find a conformal map fc of D onto a Jordan
region Ωc so that

(2.1) dH(∂Ω, ∂Ωc) < ε,

where dH is the Hausdorff distance in the Euclidean metric. If ∂Ω is a Jordan curve,
then we can find fc so that

sup
z∈D

|f(z) − fc(z)| < ε,

where f is a conformal map of D onto Ω.
Proof. The first statement follows immediately from Theorem 2.2 and Lemma 2.3.

To prove the second statement, note that the boundary of the regions constructed with
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Fig. 8. Approximating the von Koch snowflake.

the Whitney decomposition converges to ∂Ω in the Fréchet sense. By a theorem of
Courant [T, p. 383], the mapping functions can be chosen to be uniformly close.

We note that if Ω is unbounded, Lemma 2.3 and Theorem 2.4 remain true if we
use the spherical metric instead of the Euclidean metric to measure the radii of the
discs and the distance to ∂Ω.

There are other ways besides using the Whitney decomposition to approximate
the boundary of a region by a disc-chain and hence to approximate the mapping
function. However, Theorem 2.4 does not give an explicit estimate of the distance
between mapping functions in terms of the geometry of the regions. This issue will
be explored in greater detail in sections 4 and 5.

The von Koch snowflake is an example of a simply connected Jordan-domain
whose boundary has Hausdorff dimension > 1. The standard construction of the
von Koch snowflake provides a sequence of polygons which approximate it (see Fig-
ure 8). By Theorem 2.4 the mapping functions constructed from these disc-chains
converge uniformly to the conformal map to the snowflake.

It is somewhat amusing and perhaps known that a constructive proof of the
Riemann mapping theorem (without the use of normal families) then follows. Using
linear fractional transformations and a square root map, we may suppose Ω is a
bounded simply connected domain. Using the disc-chains associated with increasing
levels of the Whitney decomposition, for instance, Ω can be exhausted by an increasing
sequence of domains Ωn for which the geodesic algorithm can be used to compute the
conformal map ϕn of Ωn onto D with ϕn(z0) = 0 and ϕ′

n(z0) > 0. Then by Schwarz’s
lemma

un(w) = log

∣∣∣∣ϕm(w)

ϕn(w)

∣∣∣∣
for n = m + 1,m + 2, . . . is an increasing sequence of positive harmonic functions
on Ωm which is bounded above at z0 by Schwarz’s lemma applied to ϕ−1

n , since Ω is
bounded. By Harnack’s estimate un is bounded on compact subsets of Ω, and by the

Herglotz integral formula, log ϕm(w)
ϕn(w) converges uniformly on closed discs contained in

Ωm. Thus ϕn converges uniformly on compact subsets of Ω to an analytic function ϕ.
By Hurwitz’s theorem ϕ is one-to-one. Similarly, log |ϕ ◦ ϕ−1

m (z)/z| is an increasing
sequence of negative harmonic functions on D which tend to 0 at z = 0. By Harnack
again, |ϕ ◦ ϕ−1

m (z)| converges to |z| uniformly on compact subsets of D. If s < 1,
then |ϕ ◦ ϕ−1

m (z)| > s for |z| sufficiently close to 1, so by the argument principle,
{w : |w| < s} ⊂ ϕ(Ω), and since s is arbitrary, ϕ(Ω) = D.

In the geodesic algorithm, we have viewed the maps ϕc and ϕ−1
c as conformal maps
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ψk(Dk)

ψk(Dk+2)

ψk(Dk+2)
R

ψk(zk+1)

ck

−ck σk

−σk

Uk,2kUk,2k−1

ψk(∂Ω)

Fig. 9. Proof of Proposition 2.5.

between H and a region Ωc whose boundary contains the data points. If we are given
a region Ω and choose data points {zk} ∈ ∂Ω properly, then the next proposition says
that the computed maps ϕc and ϕ−1

c are also conformal maps between the original
region Ω and a region “close” to H.

Proposition 2.5. If D0, . . . , Dn is a closed disc-chain with points of tangency
{zk}, and if Ω is a simply connected domain such that

∂Ω ⊂
n⋃

k=0

Dk,

then the computed map ϕc for the data points {zk}n0 extends to be conformal on Ω.
We remark that changing the sign of the last map ϕn+1 in the construction of ϕc

gives a conformal map of the complement of the computed region onto H. We choose
the sign so that the computed boundary winds once around a given interior point
of Ω.

Proof (see Figure 9). Without loss of generality Ω ⊃
⋃n

k=0 Dk, and hence ∂Ω ⊂⋃
∂Dk. The basic map fa in Figure 2 extends by reflection to be a conformal map of

C
∗ \ (γ ∪ γR) onto C

∗ \ [−c, c], where γR is the reflection of γ about R. We will first
describe the image of C

∗ \ {D0 ∪ · · · ∪Dn} using these reflected maps. Set

ψk ≡ ϕk ◦ · · · ◦ ϕ1

and

Wk = ψk(C
∗ \ {D0 ∪ · · · ∪Dn}).

Then we claim C
∗ \{Wk∪WR

k } consists of 2(n+1) pairwise disjoint simply connected
regions:

C
∗ \ {Wk ∪WR

k } =

n⋃
j=k

ψk(Dj) ∪ ψk(Dj)
R ∪

2k⋃
j=1

Uk,j ,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF A VARIANT OF THE ZIPPER ALGORITHM 2589

where each region Uk,j is symmetric about R and R ⊂
⋃2k

j=1 Uk,j . The case k = 1
follows since ψ1(C

∗ \D0) is bounded by two lines from 0 to ∞. The region ψk(Dk)
is a subset of H with 0 and ψk(zk+1) on its boundary and containing the circular arc
from 0 to ψk(zk+1) which is orthogonal to R. Then

ϕk

(
C

∗ \ (ψk−1(Dk−1) ∪ ψk−1(Dk−1)
R)

)
consists of two regions V and −V = {−z : z ∈ V } with 0 and ck ∈ ∂V ∩ R and
−ck ∈ ∂(−V ) ∩ R. Set Uk,2k = V , Uk,2k−1 = −V , and Uk,p = ϕk(Uk−1,p) for
p ≤ 2k − 2. The claim now follows by induction.

Finally, we describe the extension of our maps to Ω ⊃
⋃

j Dj . The map ϕk is

the composition of a linear fractional transformation τk and the map
√

z2 + c2k (see
Figure 2). Note that δk = τk ◦ ψk−1(∂Ω ∩ ∂Dk−1) is a curve in H connecting 0 to
ick. The map

√
z2 + c2k is one-to-one and analytic on C

∗ \ (δk ∪ −δk) with image
C

∗ \ (σk ∪ −σk), where σk is a curve connecting 0 to ck ∈ R. Thus ϕk extends to be

one-to-one and analytic on Ω with image contained in H ∪
⋃2k

j=1 Uk,j . By induction,
ψn is one-to-one and analytic on Ω. By direct inspection, the final map ϕn+1 extends
to be one-to-one and analytic, completing the proof of Proposition 2.5.

As one might surmise from the proof of Proposition 2.5, care must be taken in
any numerical implementation to ensure that the proper branch of

√
z2 + c2 is chosen

at each stage in order to find the analytic extension of the computed map to all of Ω.
For this reason, in the numerical implementation of the geodesic algorithm we define
our maps using the right-half plane H

+ = {z : Re z > 0} instead of H.

3. Diamond-chains and pacmen. If we have more control than the disc-chain
condition on the behavior of the boundary of a region, then we show in this section
that the geodesic algorithm approximates the boundary with better estimates. The
computed curve always has a continuously turning tangent direction. The goal in
this section is to show that if enough data points are taken on a C1 Jordan curve,
then not only is the computed curve uniformly close, but also the tangent directions
are uniformly close to the tangent directions of the given curve. If a subcollection
zk, zk+1, . . . , zp of the data points all lie along a line segment, then it is conceivable
that the computed curve passing through the data points is oscillating alternately up
and down between the data points, and then if zp+1 is off the line, it could conceivably
cause subsequent oscillations to worsen. Over the long run, the oscillations might then
become so large that the curve is no longer a C1 approximation to the given curve.
The key lemma, Lemma 3.5 below, shows that the tangent direction at the end of
the geodesic arc actually improves if zp+1 is not too far from the line. It is this fixed
fractional improvement which does not depend on the number of data points that
allows us to iterate the argument.

We will first restrict our attention to domains of the form C \ γ, where γ is a
Jordan arc tending to ∞.

Definition 3.1. An ε-diamond D(a, b) is an open rhombus with opposite vertices
a and b and interior angle 2ε at a and at b. If a = ∞, then an ε-diamond D(∞, b) is
a sector {z : |arg(z− b)−θ| < ε}. An ε-diamond-chain is a pairwise disjoint sequence
of ε-diamonds D(z0, z1), D(z1, z2), . . . , D(zn−1, zn). A closed ε-diamond-chain is an
ε-diamond-chain with zn = z0.

See Figure 10. Let B(z,R) denote the disc centered at z with radius R.
Definition 3.2. A pacman is a region of the form

P = B(z0, R) \ {z : |arg(λ(z − z0))| ≤ ε}
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zk
zk−1zk+1

D(z0, z1)

z0
z1

Pk

Rk

Fig. 10. A diamond-chain and a pacman.

for some radius R < ∞, center z0, opening 2ε > 0, and rotation λ, |λ| = 1.
Let C1 be a constant to be chosen later (see Lemma 3.7), and let z0 = ∞.
Definition 3.3. An ε-diamond-chain D(∞, z1), D(z1, z2), . . . , D(zn−1, zn) sat-

isfies the ε-pacman condition if for each 1 ≤ k ≤ n− 1 the pacman

Pk = B(zk, Rk) \
{
z :

∣∣∣∣arg

(
z − zk

zk − zk+1

)∣∣∣∣ ≤ ε

}

with radius Rk = C1|zk+1 − zk|/ε2 satisfies(
k−2⋃
j=0

D(zj , zj+1)

)
∩ Pk = ∅.

The pacman Pk in Definition 3.3 is chosen to be symmetric about the segment
between zk and zk+1 with opening 2ε equal to the interior angle 2ε in the diamond-
chain. Note that the ε-diamond D(zk−1, zk) may intersect Pk.

The pacman condition is a quantitative method of estimating how “flat” the
polygonal curve through the data points is and prevents the data point zk from being
too close to zp for larger p (relative to |zk − zk+1|), as might happen if the polygon
almost folded back onto itself as in Figure 7. The requirement is more stringent
than the disc-chain condition, and it will allow us to control the smoothness of the
unit tangent vector on the boundary of the computed region. If we start with a C1

curve, then we can select data points that satisfy the pacman condition by making
the spacing between successive data points smaller in places where the tangent vector
is changing rapidly and where the curve almost folds back on itself.

When z0 = ∞, the first map in the geodesic algorithm is replaced by ϕ1(z) =
λ
√
z − z1. The argument of λ can be chosen so that ϕ1(z2) is purely imaginary, in

which case the boundary of the constructed region contains the half line from z2

through z1 and ∞. We will henceforth assume that

D(∞, z1) =

{
z :

∣∣∣∣arg

(
z − z1

z1 − z2

)∣∣∣∣ < ε

}
.

Theorem 3.4. There exist universal constants ε0 > 0 and C1 such that if an
ε-diamond-chain

D(∞, z1), D(z1, z2), . . . , D(zn−1, zn)
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satisfies the ε-pacman condition with ε < ε0, and if

(3.1)

∣∣∣∣∣arg

(
zk+1 − zk
zk − zk−1

)∣∣∣∣∣ < ε

10

for k = 2, . . . , n − 1, then the boundary curve γc computed by the geodesic algorithm
with the data z0 = ∞, z1, . . . , zn satisfies

γc ⊂
n⋃

k=1

(
D(zk−1, zk) ∪ {zk}

)
.

Moreover, the argument θ of the tangent to γc between zk and zk+1 satisfies

|θ − arg(zk+1 − zk)| < 3ε.

To prove Theorem 3.4, we first give several lemmas. To understand the motivation
for the lemmas, perhaps it is helpful to point out that the computed boundary ∂Ω has
a smoothly turning tangent, so that if γj ⊂ D(zj , zj+1) were tangent to ∂D(zj , zj+1)
at zj+1, then, if zj+2 were even slightly off the continuation of the straight line from
zj to zj+1 (on one side), γj+1 would not be contained in D(zj+1, zj+2). This is why
we need the improvement provided by the lemmas.

Lemma 3.5. There exists ε0 > 0 such that if ε < ε0, and if Ω is a simply
connected region bounded by a Jordan arc ∂Ω from 0 to ∞ with

{z : |arg z| < π − ε} ⊂ Ω,

then the conformal map f of H
+ = {z : Re z > 0} onto Ω normalized so that f(0) = 0

and f(∞) = ∞ satisfies

(3.2) |arg z2
0f

′(z0)| <
5ε

6
,

where z0 = f−1(1).
The circle Cz0

, which is orthogonal to the imaginary axis at 0 and passes through
z0, has a tangent vector at z0 with argument equal to 2 arg z0. The quantity arg z2

0f
′(z0)

in (3.2) is the argument of the tangent vector to f(Cz0) at f(z0).
Proof. We may suppose that |z0| = 1. Set

g(z) = log
f(z)

z2
.

Then |Im g(z)| ≤ ε on ∂H
+ and hence also on H

+, and |arg z0| ≤ ε
2 , since f(z0) = 1.

Set α = π
2ε and

A = eαg(z0) = z−2α
0 ,

ϕ(z) =
eαz −A

eαz + A
,

and

τ(z) =
1 + z

1 − z
Re z0 + i Im z0.
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Then τ is a conformal map of D onto H
+ such that τ(0) = z0 and ϕ is a conformal

map of the strip {|Im z| < ε} onto D so that ϕ(g(z0)) = 0. Thus h = ϕ ◦ g ◦ τ is
analytic on D and bounded by 1 and h(0) = 0, so that by Schwarz’s lemma

|ϕ′(g(z0))| |g′(z0)| |τ ′(0)| = |h′(0)| ≤ 1.

Consequently ∣∣∣∣f ′(z0)

f(z0)
− 2

z0

∣∣∣∣ = |g′(z0)| ≤
2ε|ReA|
πRe z0

≤ 2ε

π cos ε
2

,

and hence

|arg z2
0f

′(z0)| =

∣∣∣∣arg z0 + arg
z0f

′(z0)

f(z0)

∣∣∣∣
≤ ε

2
+ sin−1

(
ε

π cos ε
2

)

=

(
1

2
+

1

π

)
ε + O(ε2).

This proves Lemma 3.5 if ε is sufficiently small.
Lemma 3.6. Let Ω satisfy the hypotheses of Lemma 3.5. If ε < ε0/2, then the

hyperbolic geodesic γ from 0 to 1 for the region Ω lies in the kite

P = {z : |arg z| < ε} ∩
{
z : |arg(1 − z)| < 5ε

6

}
,

and the tangent vectors to γ have argument less than 8
3ε.

Proof. By Jørgensen’s theorem, γ is contained in the closed disc through 1 and 0
which has slope tan ε at 0. Likewise γ is contained in the reflection of this disc about
R, and hence |arg z| < ε on γ. This also shows that γ is contained in a kite like P
but with angles ε at both 0 and 1. In the proof of Theorem 3.4, however, we need the
improvement to 5ε

6 of the angle at 1.
By Lemma 3.5, a portion of γ near 1 lies in P . Suppose w1 ∈ γ with |argw1| =

δ < ε and then apply Lemma 3.5 to the region 1
w1

Ω with ε replaced by ε + δ. Then
the tangent vector to γ at w1 has argument θ, where

(3.3) |θ − argw1| <
5

6
(ε + |argw1|).

Since |argw1| < ε, we have |θ| ≤ 8
3ε. Moreover, (3.3) also implies θ < 5

6ε when
argw1 ≤ 0 and θ > − 5

6ε when argw1 ≥ 0. But if w1 is the last point on γ∩∂P before
reaching 1, this is impossible. Thus γ ⊂ P , proving the lemma.

The next lemma improves Lemma 3.5 by requiring only that the portion of ∂Ω
in a large disc lies inside a small sector.

Lemma 3.7. There is a constant C1 so that if ε < ε0/2 and if ∂Ω is a Jordan
arc such that 0 ∈ ∂Ω, ∂Ω ∩ {|z| > C1/ε

2} 	= ∅, and

Pε =

{
z : |arg z| < π − ε and |z| ≤ C1

ε2

}
⊂ Ω,

then the conformal map f : H
+ −→ Ω with f(0) = 0 and |f(∞)| > C1

ε2 satisfies

(3.4) |arg z2
0f

′(z0)| <
9ε

10
,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONVERGENCE OF A VARIANT OF THE ZIPPER ALGORITHM 2593

where z0 = f−1(1).
Proof. Set R = C1

ε2 and BR = B(0, R) = {|z| < R}. Let UR be the component
of Ω ∩ BR containing the point 1. Then f−1(UR) ⊂ H

+ is bounded by a set F ⊂ iR
and curves σj ⊂ H

+ on which |f | = R. Since 0 ∈ ∂f−1(UR) and f(∞) /∈ BR, exactly
one of the curves (call it σ1) will connect the positive imaginary axis to the negative
imaginary axis. The function u(z) = arg f(z) − arg z2 is harmonic on the simply
connected region f−1(UR) with |u| ≤ 2π + ε. Then ∂Ω ∩ BR contains a subarc δ
connecting 0 to ∂BR and |u| < ε on f−1(δ). It is possible that BR contains other
subarcs of ∂Ω, none of which intersect Pε. We may suppose that Pε ∩ ∂BR ⊂ f(σ1),
for if Pε ∩ ∂BR ⊂ f(σj), j 	= 1, then σj separates a point z1 ∈ iR from f−1(UR).
Then

g(ζ) = f

(
ζ

1 + ζ/z1

)

satisfies the hypotheses of the lemma and Pε ∩ ∂BR is a subset of the image of
the corresponding curve in H

+ connecting the positive and negative imaginary axes.
Moreover, a direct computation shows that

ζ2
0g

′(ζ0) = z2
0f

′(z0),

where ζ0 = z0/(1 − z0/z1).
We conclude |u(z)| < ε at the endpoints of each σj because Pε ⊂ UR. Since

u is continuous on the closure of f−1(UR), and |arg f | > π − ε on ∂f−1(UR) ∩ iR,
and arg z2 is the same at each endpoint of σj , j > 1, we conclude that |u| < ε on
∂f−1(UR) ∩ iR. By the maximum principle

|u(z)| ≤ ε + (2π + ε)ω(f(z), ∂Br, UR)

for z ∈ f−1(UR), where ω(z, E, V ) is the harmonic measure at z for E ∩ V in V \ E.
By Beurling’s projection theorem [GM, p. 105] and a direct computation (see [GM,
Corollary III.9.3])

(3.5) ω(1, ∂BR,Ω) ≤ ω(1, ∂BR, BR \ [−R, 0]) =
4

π
tan−1

(
1

R
1
2

)
.

Evaluating at z0 = f−1(1), we obtain

|u(z0)| = |− arg z2
0 | ≤ ε + (2π + ε)

4

π
tan−1

(
ε

C
1
2
1

)
<

11ε

10

for C1 sufficiently large. Thus

(3.6) |arg z0| ≤
11ε

20
.

Next we show that there is a large half disc contained in f−1(Ω ∩ BR). We may
suppose that |z0| = 1. Set

S = inf{|w − i Im z0| : w ∈ H
+ and f(w) ∈ ∂BR}.

Using the map

z − i Im z0 − S

z − i Im z0 + S
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of H
+ onto D and Beurling’s projection theorem again,

ω(z0, f
−1(∂BR),H+) ≥ ω(z0, [S,∞) + i Im z0,H

+).

Then by (3.5), (3.6), and an explicit computation

4

π
tan−1

(
ε

C
1
2
1

)
≥ 2

π
tan−1

(
Re z0√

S2 − Re z2
0

)
.

For ε sufficiently small, this implies

B

(
0,

C
1
2
1

2ε

)
∩ H

+ ⊂ f−1

(
Ω ∩B

(
0,

C1

ε2

))
.

Now follow the proof of Lemma 3.5 replacing τ with a conformal map of D onto

H
+ ∩ {|z| < C

1/2
1

2ε } such that τ(0) = z0. Then τ ′(0) = 2 Re z0 + O( ε

C
1/2
1

), and for C1

sufficiently large, (3.4) holds.
Following the proof of Lemma 3.6 (replacing 5/6 by 9/10), the next corollary is

obtained.
Corollary 3.8. Suppose ∂Ω is a Jordan arc such that 0 ∈ ∂Ω, ∂Ω ∩ {|z| >

C1/ε
2} 	= ∅, and {

z : |arg z| < π − ε and |z| ≤ C1

ε2

}
⊂ Ω.

If ε < ε0/2, then the hyperbolic geodesic γ from 0 to 1 for the region Ω lies in the kite

(3.7) P = {z : |arg z| ≤ ε} ∩
{
z : |arg(1 − z)| ≤ 9ε

10

}
.

Moreover, the tangent vectors to this geodesic have argument at most 3ε.
Proof of Theorem 3.4. Use the constant C1 from Lemma 3.7 in Definition 3.3. As

in Theorem 2.2, let γj denote the portion of the computed boundary ∂Ωc between zj
and zj+1. By construction γ0 ∪ γ1 is a half line through z0 = ∞, z1, and z2. Make
the inductive hypotheses that

(3.8)

k−1⋃
j=0

γj ⊂
k−1⋃
j=0

D(zj , zj+1)

and

(3.9) γk−1 ∩ Pk = ∅.

Since the ε-diamond-chain D(∞, z1), D(z1, z2), . . . , D(zn−1, zn) satisfies the ε-pacman
condition, (3.8) and (3.9) show that the hypotheses of Corollary 3.8 hold for the curve

γ =
⋃k−1

0 γj and hence γk ⊂ D(zk, zk+1). Also, by Corollary 3.8 and (3.1),

γk ∩ Pk+1 = ∅.

By induction, the theorem follows.
If the hypotheses of Theorem 3.4 hold, then the proof of Proposition 2.5 gives the

following corollary.
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Corollary 3.9. If Ω and the diamond-chain D(zk, zk+1) satisfy the hypotheses
of Theorem 3.4, then the conformal map ϕc computed in the geodesic algorithm extends
to be conformal on Ω ∪

⋃n
k=0 D(zk, zk+1).

The next theorem says that for a region Ω bounded by a C1 curve, the geodesic
algorithm with data points z0, z1, . . . , zn produces a region Ωc whose boundary is a
C1 approximation to ∂Ω.

Theorem 3.10. Suppose Ω is a Jordan region bounded by a C1 curve ∂Ω. Then
there exists δ0 > 0 depending on ∂Ω so that for δ < δ0,

∂Ω ⊂
⋃
k

(
D(zk, zk+1) ∪ {zk}

)
,

where D =
⋃
D(zk, zk+1) is a δ-diamond-chain, and so that ∂Ωc, the boundary of the

region computed by the geodesic algorithm, is contained in D ∪ (
⋃

k {zk}). Moreover,
if ζ ∈ ∂Ωc and if α ∈ ∂Ω with |ζ − α| < δ, then

(3.10) |ηζ − ηα| < 6δ,

where ηζ and ηα are the unit tangent vectors to ∂Ω and ∂Ωc at ζ and α, respectively.
Proof. There were two reasons for requiring that z0 = ∞ in Theorem 3.4. The

first reason was to ensure that

(3.11)

(
k−1⋃
0

γj

)
∩ (C \B(zk, Rk)) 	= ∅,

as needed for Lemma 3.7. The second reason is the difficulty in closing the curve,
since Lemma 3.7 does not apply. The difficulty is that a pacman centered at zn will
contain z0 if z0 is too close to zn. Since ∂Ω ∈ C1, we may suppose that the δ-diamond-
chain D(z0, z1), D(z1, z2), . . . , D(zn−1, zn) satisfies the pacman condition. Note that
this requires zn to be much closer to zn−1 than to z0. Since ∂Ω ∈ C1, if |zn − z0| is
sufficiently small, we can find two discs

Δp ⊂ C \
n−1⋃

0

D(zk, zk+1)

for p = 1, 2 with

{z0, zn} = ∂Δ1 ∩ ∂Δ2 and Δ1 ∩ Δ2 ⊂ D(zn, z0),

where D(zn, z0) is a δ-diamond. By Jørgensen’s theorem, as in the proof of Theo-
rem 2.2, the geodesic γn between zn and z0 is contained in Δ1 ∩ Δ2. Then by the
proof of Theorem 3.4, ∂Ωc is contained in the δ-diamond-chain. The statement about
tangent vectors now follows from Corollary 3.8.

We say that {zk} are locally evenly spaced if

(3.12)
1

D
≤

∣∣∣∣zk − zk−1

zk − zk+1

∣∣∣∣ ≤ D

for some constant D < ∞. Note that the spacing between points can still grow or
decay geometrically. We define the mesh size μ of the data points {zj} to be

μ({zj}) = sup
k

|zk − zk+1|.
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We say that a Jordan curve Γ in the extended plane C
∗ is a K-quasicircle if for

some linear fractional transformation τ

(3.13)
|w1 − w| + |w − w2|

|w1 − w2|
≤ K

for all w1, w2 ∈ τ(Γ) and for all w on the subarc of τ(Γ) with smaller diameter. Thus
circles and lines are 1-quasicircles. Quasicircles look very flat on all scales if K is close
to 1, but for any K > 1 they can contain a dense set of spirals. See, for example,
Figure 8.

If Γ satisfies (3.13) with K = 1+δ and small δ and if {zk} ⊂ τ(Γ) is locally evenly
spaced, then

(3.14)

∣∣∣∣arg

(
zk − zk−1

zk+1 − zk

)∣∣∣∣ ≤ Cδ
1
2

for some constant C, depending on D. The referee suggested that a proof of this
fact might help the reader. Note that (3.12), (3.13), and (3.14) are invariant under
translations and dilations, so that we may assume zk−1 = −1 and zk = 0 and write
zk+1 = ζ. Then (3.13), with w1 = −1, w = 0, and w2 = ζ, shows that

1 + |ζ| ≤ (1 + δ)|1 + ζ|.

Writing ζ = reiθ and squaring yield

1 − cos θ ≤ (2δ + δ2)
(1 + r)2

2r
.

By (3.12) D−1 ≤ |ζ| = r ≤ D so that

θ2

2
≤ (2δ + δ2)

(1 + D)2

2D
,

and ∣∣∣∣arg

(
zk − zk−1

zk+1 − zk

)∣∣∣∣ = |θ| ≤ Cδ
1
2 .

Theorem 3.11. There is a constant K0 > 1 so that if Γ is a K-quasicircle
with K = 1 + δ < K0 and if {zk} are locally evenly spaced on Γ, then the geodesic
algorithm finds a conformal map of H onto a region Ωc bounded by a C(K)-quasicircle
containing the data points {zk}, where C(K) is a constant depending only on K.

We can choose C(K) so that C(K) → 1 as K → 1. Moreover, given η > 0, if the
mesh size μ({zk}) is sufficiently small, then

dH(Γ, ∂Ωc) < η,

where dH is the Hausdorff distance in the spherical metric.
Proof. We may suppose that Γ satisfies (3.13) with K = 1 + δ and δ small. Note

that ∞ ∈ Γ. If {zk}n1 are locally evenly spaced points on ∂Ω, with μ = max |zk−zk−1|
sufficiently small, then (3.14) holds and D(∞, z1), D(z1, z2), . . . , D(zn−1, zn), D(zn,∞)

is a Cδ
1
2 -diamond-chain, where the main axis of the cone D(∞, z1) is in the direc-

tion z1 − z2 and the main axis of D(zn,∞) is in the direction zn − zn−1. Moreover,
D(∞, z1), D(z1, z2), . . . , D(zn−1, zn) satisfies the ε-pacman condition if

ε ≥ Cδ
1
4
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for some universal constant C. Now apply Theorem 3.4 to obtain γj ⊂ D(zj−1, zj),
j = 1, . . . , n − 1. By an argument similar to the proof of Theorem 3.10, we can also
find a geodesic arc for C \ (

⋃n−1
0 γj) from zn to ∞ contained in D(zn,∞). Then the

computed curve will be a C(K)-quasicircle.
Note that if w1, w, and w2 are data points, then by assumption (3.13) holds with

K = 1 + δ. By Corollary 3.8, the tangent directions to the computed curve change
by no more than Cδ

1
4 between the data points, and hence the computed curve is a

(1 + C ′δ
1
4 )-quasicircle.

As noted before, the boundary of the region computed with the geodesic algo-
rithm, ∂Ωc, is a C1 curve. We end this section by proving that ∂Ωc is slightly better
than C1. If 0 < α < 1, we say that a curve Γ belongs to C1+α if arc length parame-
terization γ(s) of Γ satisfies

|γ′(s1) − γ′(s2)| ≤ C|s1 − s2|α

for some constant C < ∞.
We say that a conformal map f defined on a region Ω belongs to C1+α(Ω),

0 < α < 1, provided f and f ′ extend to be continuous on Ω and there is a con-
stant C so that

|f ′(z1) − f ′(z2)| ≤ C|z1 − z2|α

for all z1, z2 in Ω.
Proposition 3.12. If the bounded Jordan region Ωc is the image of the unit disc

by the geodesic algorithm, then

∂Ωc ∈ C3/2,

and ∂Ωc /∈ C1+α for α > 1/2, unless Ωc is a circle or a line. Moreover, ϕ ∈ C3/2(Ωc)
and ϕ−1 ∈ C3/2(D).

Proof. To prove the first statement, it is enough to show that if γ is an arc of a
circle in H which meets R orthogonally at 0 (constructed by application of one of the
maps f−1

a as in Figure 2), then the curve σ which is the image of [−1, 1]∪γ by the map

S(z) =
√
z2 − d2 is C

3
2 (and no better class) in a neighborhood of S(0) = id. Indeed,

subsequent maps in the composition ϕ−1 are conformal in H and hence preserve
smoothness. For d > 0, the function

ψ(z) =

√√√√( √
z2 − c2

1 +
√
z2 − c2/b

)2

− d2 = id+
i

2d
(z2 − c2)− i

bd
(z2 − c2)

3
2 +O((z2 − c2)2)

for some choice of b ∈ R and c > 0 is a conformal map of the upper-half plane onto a
region whose complement contains the curve σ. Clearly ψ ∈ C

3
2 near z = ±c, and so

by a theorem of Kellogg (see [GM, p. 62]), σ ∈ C
3
2 . The same theorem implies σ is

not in Cα for α > 3
2 unless 1/b = 0. This argument also shows that ϕc ∈ C3/2(Ω). To

prove ϕ−1
c ∈ C

3
2 (D), apply the same ideas above to the inverse maps. Alternatively,

this last fact can be proved by following the proof of Lemma II.4.4 in [GM].

4. Estimates for conformal maps onto nearby domains. We begin this
section with a discussion of the following question. Consider two simply connected
planar domains Ωj with 0 ∈ Ωj and conformal maps ϕj : Ωj → D fixing 0, suitably
normalized (for instance, positive derivative at 0). If Ω1 and Ω2 are “close,” what can
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z1

z2

z3
Ω1

Fig. 11. Small Hausdorff distance.

be said about |ϕ1 −ϕ2| on Ω1 ∩Ω2, or about |ϕ−1
1 −ϕ−1

2 | on D? The article [W] gives
an overview and numerous results in this direction. How should “closeness” of the
two domains be measured? Simple examples show that the Hausdorff distance in the
Euclidean or spherical metric between the boundaries does not give uniform estimates
for either ||ϕ1 − ϕ2||∞ or ||ϕ−1

1 − ϕ−1
2 ||∞. For example, in Figure 11, Ω1 contains a

disc of radius 1 − δ, where δ is small, and hence for Ω2 = D, dH(Ω1,Ω2) ≤ δ, but
|ϕ1(z1)− ϕ1(z2)| is large and |ϕ1(z2)− ϕ1(z3)| is small so that neither ||ϕ1(z)− z||∞
nor ||ϕ−1

1 (z) − z||∞ is small.
Mainly for ease of notation, we will assume throughout this section that the

Ωj are Jordan-domains, and denote by γj : ∂D → ∂Ωj an orientation preserving
parameterization. Even the more refined distance

inf
α

||γ1 − γ2 ◦ α||∞,

where the infimum is over all homeomorphisms α of ∂D, does not control ||ϕ−1
1 −

ϕ−1
2 ||∞ or ||ϕ1 − ϕ2||∞. For example, let Ω2 be a small rotation of the region Ω1

in Figure 11. What is needed is some control on the “roughness” of the boundary.
Following [W], for a simply connected domain Ω we define

η(δ) = ηΩ(δ) = sup
C

diamT (C),

where the supremum is over all crosscuts of Ω with diamC ≤ δ, and where T (C) is
the component of Ω \ C that does not contain 0. Notice that η(δ) → 0 as δ → 0
is equivalent to saying that ∂Ω is locally connected, and the condition η(δ) ≤ Kδ
for some constant K is equivalent to saying that Ω is a John-domain (see, e.g., [P,
Chapter 5]). It is not difficult to control the modulus of continuity of ϕ−1 : D → Ω
in terms of η; see [W, Theorem I]. This can be used to estimate ||ϕ−1

1 − ϕ−1
2 ||∞ in

terms of the Hausdorff distance between the boundaries, for example.
Theorem 4.1 (Warschawski [W, Theorem VI]). If Ω1 and Ω2 are John-domains,

ηj(δ) ≤ κδ for j = 1, 2, and if dH(∂Ω1, ∂Ω2) ≤ ε, then

||ϕ−1
1 − ϕ−1

2 ||∞ ≤ Cεα

with α = α(κ) and C = C(κ,dist(0, ∂Ω1 ∪ ∂Ω2)).
In fact, Warschawski proves that every α < 2/(π2κ2) will work (with C = C(α)).

Using the Hölder continuity of quasiconformal maps, his proof can easily be modified
to give the following better estimate if Ω1 and Ω2 are K-quasidiscs with K near 1. A
K-quasidisc is a Jordan region bounded by a K-quasicircle.
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Corollary 4.2. If Ω1 and Ω2 are K-quasidiscs, and if dH(∂Ω1, ∂Ω2) ≤ ε, then

||ϕ−1
1 − ϕ−1

2 ||∞ ≤ Cεα

with α = α(K) → 1 as K → 1.
As for estimates of ||ϕ1 − ϕ2||∞, Warschawski shows [W, Theorem VII] that

sup
Ω1

|ϕ1 − ϕ2| ≤ Cε1/2 log
2

ε

if Ω1 ⊂ Ω2 and if Ω1 is a John-domain, with C depending on κ and on dist(0,
∂Ω1 ∪ ∂Ω2). However, his result does not apply without the assumption of inclusion
Ω1 ⊂ Ω2. To treat the general case the trick of controlling |ϕ1 − ϕ2| by passing to
the conformal map ϕ of the component Ω of Ω1 ∩ Ω2 containing 0 (which now is
included in Ωj) does not seem to work, as the geometry of Ω cannot be controlled.
Nevertheless, for the case of disc-chain domains, the above estimate can be proved,
even without any further assumption on the geometry on the disk-chain.

Theorem 4.3. Let D1, D2, . . . , Dn be a closed ε-disc-chain surrounding 0. Sup-
pose ∂Ωj ⊂

⋃
k Dk for j = 1, 2, and let ϕj : Ωj → D be conformal maps with

ϕ1(0) = ϕ2(0) = 0 and ϕ1(p) = ϕ2(p) for a point p ∈ ∂Ω1 ∩ ∂Ω2. Then

sup
w∈Ω1∩Ω2

|ϕ1(w) − ϕ2(w)| ≤ Cε1/2 log
1

ε
,

where C depends on dist(0,
⋃

k Dk) only.
In case we have control on the geometry of the domains, we have the following

counterpart to Corollary 4.2.
Theorem 4.4. If Ω1 and Ω2 are K-quasidiscs, if dH(∂Ω1, ∂Ω2) ≤ ε, and if

ϕ1(p1) = ϕ2(p2) for a pair of points pj ∈ ∂Ωj with |p1 − p2| ≤ ε, then

sup
w∈Ω

|ϕ1(w) − ϕ2(w)| ≤ Cεα

with α = α(K) → 1 as K → 1, where Ω is the component of Ω1 ∩ Ω2 containing 0.
The proofs of both theorems rely on the following harmonic measure estimate,

which is an immediate consequence of a theorem of Marchenko [M] (see [W, section 3]
for the statement and a proof). To keep this paper self-contained, we include a simple
proof, shown to us by John Garnett, for which we thank him.

Lemma 4.5. Let 0 < θ < π, 0 < ε < 1/2, and set D = D \ {reit : −θ ≤ t ≤ θ,
1 − ε ≤ r < 1}, A = ∂D \ ∂D. Then

ω(0, A,D) ≤ θ

π
+ Cε log

1

ε

for some universal constant C.
Proof. Set ω(z) = ω(z,A,D) for z ∈ D. By the mean value property, it is enough

to show that

ω(z) ≤ C
ε

t− θ

for z = (1 − ε)eit and θ + ε ≤ t ≤ π. To this end, set I = {eiτ : −θ ≤ τ ≤ θ} and
consider the circular arc {ζ : ω(ζ, I,D) = 1

3}. If ε < ε0 for some universal ε0 (for
ε ≥ ε0 there is nothing to prove), then A is disjoint from this arc and it follows that
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ω(ζ, I,D) ≥ 1
3 on A. The maximum principle implies ω(ζ) ≤ 3ω(ζ, I,D) on D. Now

the desired inequality follows from

ω((1−ε)eit, I,D) =
1

2π

∫ θ

−θ

1 − (1 − ε)2

|(1 − ε)eit − eiτ |2 dτ ≤ Cε

∫ θ

−θ

1

(t− τ)2
dτ < C

ε

t− θ
.

Proof of Theorem 4.3. We may assume that ϕj(p) = 1. We will first assume that p
is one of the points Dk∩Dk+1. Denote by Ω the largest simply connected domain ⊂ C

containing 0 whose boundary is contained in
⋃

k Dk (thus Ω is the union of
⋃

k Dk

and the bounded component of C \
⋃

k Dk), and ϕ is the conformal map from Ω to
D with ϕ(0) = 0 and ϕ(p) = 1. First, let z ∈ ∂Ω1 ∩ ∂Ω. Denote by B, respectively,
B1, the arc of ∂Ω (∂Ω1) from p to z. By the Beurling projection theorem (or the
distortion theorem), every ϕ(Dj) has diameter ≤ C

√
ε. Therefore, ϕ(B1) is an arc in

D, with the same endpoints as ϕ(B), that is contained in S = {reit : 1−C
√
ε ≤ r < 1,

−C
√
ε < t < argϕ(z) + C

√
ε}. Denote A = ∂S. By Lemma 4.5,

ω(0, B1,Ω1) ≤ ω(0, B1,Ω \B1) ≤ ω(0, A,D \A) ≤ 1

2π
argϕ(z) + 2C

√
ε+C

√
ε log

1√
ε

and we obtain

argϕ1(z) = 2πω(0, B1,Ω1) ≤ argϕ(z) + Cε1/2 log
1

ε
.

The same argument, applied to the other arc from p to z, gives the opposite inequality,
and together it follows that

|ϕ(z) − ϕ1(z)| ≤ Cε1/2 log
1

ε
.

Now let z ∈ ∂Ω1 be arbitrary. If z′ is a point of ∂Ω1 ∩ ∂Ω in the same disc Dj as
z, then we have

|ϕ(z)−ϕ1(z)| ≤ |ϕ(z)−ϕ(z′)|+|ϕ(z′)−ϕ1(z
′)|+|ϕ1(z)−ϕ1(z

′)| ≤ 2C
√
ε+Cε1/2 log

1

ε
.

The maximum principle yields |ϕ − ϕ1| ≤ Cε1/2 log 1
ε on Ω1. The same argument

applies to |ϕ− ϕ2|, and the theorem follows from the triangle inequality.
If p ∈ ∂Ω1 ∩ ∂Ω2 is arbitrary, let p′ be one of the points Dk ∩Dk+1 in the same

disc Dj as p. Then the above estimate, applied to a rotation of ϕ1, ϕ2, and p′, gives
|ϕ2(p

′)/ϕ1(p
′)ϕ1 −ϕ2| ≤ Cε1/2 log 2

ε , and the theorem follows from |ϕj(p)−ϕj(p
′)| ≤

C
√
ε.
The following lemma is another easy consequence of the aforementioned theorem

of Marchenko [M] (see [W, section 3]).
Lemma 4.6. Let H ⊂ D be a K-quasidisc with 0 ∈ H such that ∂H ⊂ {1 − ε <

|z| < 1}, and let h be a conformal map from D to H with h(0) = 0 and |h(p)− p| < ε
for some p ∈ ∂D. Then

|h(z) − z| ≤ Cε log
1

ε
,

where C depends on K only.
Proof. We may assume that p = 1. Let z = eiτ and consider the arc A = {h(eit) :

0 ≤ t ≤ τ} ⊂ ∂H of harmonic measure τ/2π. For a suitable constant C, depending
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on K, we have that D = D \ {reit : −Cε ≤ t ≤ arg h(z) +Cε, 1− ε ≤ r < 1} contains
A. By the maximum principle and Lemma 4.5,

τ/2π = ω(0, A,H) ≤ ω(0, ∂D ∩ D, D) ≤ arg h(z)/2π + Cε log
1

ε
.

Applying the same reasoning to ∂H \ A, the lemma follows for all z ∈ ∂D and thus
for all z ∈ D.

Note that the conclusion of Lemma 4.6 is true if, instead of assuming that H is
a K-quasidisc, we assume only that arg z is increasing on ∂H.

Proof of Theorem 4.4. Because Ω1 and Ω2 are K-quasidiscs, ϕ1 and ϕ2 have K2-
quasiconformal extensions to C (see [L, Chapter I.6]). In particular, they are Hölder
continuous with exponent 1/K2 (see [A]), and it follows that with α = 1/K2 and
r = 1 − Cεα, we have ϕ−1

1 ({|z| ≤ r}) ⊂ Ω2. In particular, h(z) = ϕ2(ϕ
−1
1 (rz)) is a

conformal map from D onto a K4-quasidisc H ⊂ D, and by the Hölder continuity of ϕ2

and ϕ−1
1 we have ∂H ⊂ {1−Cεα

3

< |z| < 1}. Now Lemma 4.6 yields |h(z)−z| ≤ Cεβ

for any β < α3 and C = C(β). For w ∈ Ω ⊂ Ω1 ∩ Ω2, let z = ϕ1(w); then

|ϕ1(w) − ϕ2(w)| = |z − ϕ2(ϕ
−1
1 (z))|

≤ |z − ϕ2(ϕ
−1
1 (rz))| + |ϕ2(ϕ

−1
1 (rz)) − ϕ2(ϕ

−1
1 (z))| ≤ Cεβ ,

where again we have used the Hölder continuity of ϕ2 and ϕ−1
1 . The theorem fol-

lows.

5. Convergence of the mapping functions. We will now combine the results
of sections 2 and 3 with the estimates of the previous section to obtain quantitative
estimates on the convergence of the geodesic algorithm. Throughout this section, Ω
will denote a given simply connected domain containing 0, bounded by a Jordan curve
∂Ω, z0, . . . , zn are consecutive points on ∂Ω, Ωc is the domain and ϕc : Ωc → D is
the map computed by the geodesic algorithm, and ϕ : Ω → D is a conformal map,
normalized so that ϕc(0) = ϕ(0) = 0 and ϕc(p0) = ϕ(p0) for some p0 ∈ ∂Ω ∩ ∂Ωc.

Combining Theorems 2.2 and 4.3 and Propositions 2.5 and 3.12 we immediately
obtain the following theorem.

Theorem 5.1. If ∂Ω is contained in a closed ε-disc-chain
⋃n

j=0 Dj and if zj =

∂Dj ∩ ∂Dj+1, then ∂Ωc is a smooth (C
3
2 ) piecewise analytic Jordan curve contained

in
⋃n

j=0 Dj ∪ zj, the map ϕc extends to be conformal on Ω ∪ Ωc, and

sup
w∈Ω

|ϕ(w) − ϕc(w)| ≤ Cε1/2 log
1

ε
.

Now assume that ∂Ω is a K-quasicircle with K < K0, and assume approximate
equal spacing of the zj , say, 1

2ε < |zj+1 − zj | < 2ε. Then

(5.1)
C

ε
≤ n ≤ C

εd
,

where d (essentially the Minkowski dimension) is close to 1 when K is close to 1.
Combining Theorem 3.11 with Corollary 4.2 and Theorem 4.4, we have the following
theorem.

Theorem 5.2. Suppose ∂Ω is a K-quasicircle with K < K0. The Hausdorff dis-
tance between ∂Ω and ∂Ωc is bounded by C ′(K)ε, where C ′(K) is a constant depending
upon K that tends to 0 as K tends to 1 and n to infinity. Furthermore,

||ϕ−1 − ϕ−1
c ||∞ ≤ Cεα
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and

sup
w∈Ω0

|ϕ(w) − ϕc(w)| ≤ Cεα

with α = α(K) → 1 as K → 1, where Ω0 is the component of Ω ∩ Ωc containing 0.
The best possible exponent in (5.1) in terms of the standard definition of K(∂Ω),

which slightly differs from our geometric definition, is given by Smirnov’s (unpub-
lished) proof of Astala’s conjecture,

d ≤ 1 +

(
K − 1

K + 1

)2

.

This allows us to easily convert estimates given in terms of ε, as in Theorem 5.2, into
estimates involving n.

Finally, assume that ∂Ω is a smooth closed Jordan curve. Then Ω is a K-
quasicircle and a John-domain by the uniform continuity of the derivative of the
arc length parameterization of ∂Ω. The quasiconformal norm K(∂Ω) and the John
constant depend on the global geometry, as does the ε-pacman condition when there
are not very many data points. As the example in Figure 11 shows, even an infinitely
differentiable boundary can have a large quasiconformal constant and a large John
constant. However, the ε-pacman condition becomes a local condition if the mesh size
μ({zk}) = maxk |zk+1 − zk| of the data points is sufficiently small. The radii of the
balls in the definition of the ε-pacman condition

(5.2) Rk = C1
|zk+1 − zk|

ε2

increase as ε decreases but can be chosen small for a fixed ε if the mesh size μ is small.
To apply the geodesic algorithm we suppose that the data points have small mesh size
and, as in the proof of Theorem 3.10, |(z0 − zn)/(zn−1 − zn)| is sufficiently large so
that the ε-diamond-chain D(z0, z1), . . . , D(zn−1, zn) satisfies the ε-pacman condition
and

∂Ω ⊂
n⋃

k=0

D(zk, zk+1),

where D(zn, zn+1) = D(zn, z0) is an ε-diamond. This can be accomplished for smooth
curves by taking data points z0, . . . , zn, z0 with small mesh size and discarding the last
few zn−n1

, . . . , zn, where n1 is an integer depending on ε and on ∂Ω. The remaining
subset still has small mesh size (albeit larger). This process of removing the last few
data points is necessary to apply the proof of Theorem 3.10, but in practice it is
omitted. We view it only as a defect in the method of proof.

If ∂Ω ∈ C1 and if ϕ is a conformal map of Ω onto D, then arg (ϕ−1)′ is continuous.
Indeed, it gives the direction of the unit tangent vector. However, there are examples
of C1 boundaries where ϕ′ and (ϕ−1)′ are not continuous. In fact, it is possible for
both to be unbounded. If we make the slightly stronger assumption that ∂Ω ∈ C1+α

for some 0 < α < 1, then ϕ ∈ C1+α and ϕ−1 ∈ C1+α by Kellogg’s theorem (see
[GM, p. 62]). In particular, the derivatives are bounded above and below on Ω and
D, respectively. Because of Proposition 3.12, we will consider the case 1 + α = 3/2.
Similar results are true for 1 + α < 3/2.
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Theorem 5.3. Suppose ∂Ω is a closed Jordan curve in C3/2 and ϕ is a conformal
map of Ω onto D. Suppose z0, z1, . . . , zn, z0 are data points on ∂Ω with mesh size
μ = max |zj − zj+1|. Then there is a constant C1 depending on the geometry of ∂Ω,
so that the Hausdorff distance between ∂Ω and ∂Ωc satisfies

(5.3) dH(∂Ω, ∂Ωc) ≤ C1μ
3/2

and the conformal map ϕc satisfies

(5.4) ||ϕ−1 − ϕ−1
c ||∞ ≤ Cμp

and

(5.5) sup
z∈Ω∩Ωc

|ϕ(z) − ϕc(z)| ≤ Cμp

for every p < 3/2.
For example, if n data points are approximately evenly spaced on ∂Ω, so that

μ = C/n, then the error estimates are of the form C/n3/2 in (5.3) and C/np for
p < 3/2 in (5.4) and (5.5). While Theorem 5.3 gives simple estimates in terms of the
mesh size or the number of data points, smaller error estimates can be obtained with
fewer data points if the data points are distributed so that there are fewer on subarcs
where ∂Ω is flat and more where the boundary bends or where it folds back on itself.
In other words, construct diamond-chains with angles εk satisfying the εk-pacman
condition centered at zk for each k. The errors will then be given by

max
k

(
εk|zk − zk+1|

)p
.

Proof. It is not hard to see from (5.2) that ∂Ω satisfies the ε-pacman condition
with

ε = Cμ1/2

for C sufficiently large. By the proof of Theorem 3.10, ∂Ωc is contained in the union
of the diamonds. The diamonds D(zk, zk+1) have angle Cμ1/2 and width bounded by
Cμ, and therefore (5.3) holds.

Let ψ be a conformal map of D onto the complement of Ω, C
∗ \ Ω. Then by

Kellogg’s theorem, as mentioned above, ψ ∈ C3/2. In particular, |ψ′| is bounded
above and below on 1/2 < |z| < 1. By the Koebe distortion theorem there are
constants C1, C2 so that

C1(1 − |z|) ≤ dist(ψ(z), ∂Ω) ≤ C2(1 − |z|)

for all z with 1/2 < |z| < 1. Thus we can choose r = 1 − C3μ
3/2 so that the image

of the circle of radius r, Ir = ψ({|z| = r}), does not intersect the diamond-chain and
dH(Ir, ∂Ω) ∼ μ3/2. Then the bounded component of the complement of Ir is a Jordan
region Ur containing Ω and bounded by Ir ∈ C3/2, with C3/2 norm dependent only
on ∂Ω, and the bounds on |ψ′|.

Let σ be a conformal map of Ur onto D. Inequality (5.4) now follows from [W,
Theorem VIII] by comparing the conformal maps ϕ−1 and ϕ−1

c to the conformal map
σ−1, where σ : Ur → D and where all three (inverse) conformal maps are normalized
to have positive derivative at 0 and map 0 to the same point in Ω.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2604 DONALD E. MARSHALL AND STEFFEN ROHDE

To see (5.5), note that

σ(∂Ω ∪ ∂Ωc) ⊂ {z : 1 − |z| < cμ3/2}.

Moreover, because ∂Ω ∪ ∂Ωc is contained in the diamond-chain, and because both
σ ∈ C3/2 and σ−1 ∈ C3/2, arg σ(ζ) is increasing along ∂Ω for μ sufficiently small. By
the remark after the proof of Lemma 4.6,

|ω(0, γ, σ(Ω)) − ω(0, γ∗,D)| ≤ Cμ3/2 logμ

for every subarc γ of σ(∂Ω), where γ∗ denotes the radial projection of γ onto ∂D. The
same statements are true for ∂Ωc. Then (5.5) follows because the harmonic measure
of the subarc γp of ∂Ω from p0 to p is given by

ω(0, γp,Ω) =
1

2π
arg

(
ϕ(p)

ϕ(p0)

)
,

and a similar statement is true for ϕc.
The constant C in Theorem 5.3 depends on the quasiconformality constant K =

K(∂Ω), p, diam(Ω), dist(0, ∂Ω), and

M = sup
1/2<|z|<1

(
|ψ′|, 1/|ψ′|

)
,

where ψ is a conformal map of the complement of Ω to D. If Ir = ψ({|z| = r})
is replaced by a C3/2 curve which is constructed geometrically instead of using the
conformal map ψ, then the constant C can be taken to depend only on the geometry
of the region Ω.

Similar results, albeit more complicated, for uniform convergence of the deriva-
tives of the computed maps and the derivatives of their inverses could also be obtained
from the results in [W2, Theorems III and V].

6. Some numerical results. An in-depth comparision of the algorithms in this
article with other methods of conformal mapping and convergence rates will be written
separately. To give the reader a sense of the speed and accuracy of computations, if
10,000 data points are given, it takes about 25 seconds with the geodesic algorithm
to compute the conformal maps to the interior, the exterior, and their inverses on a
3.2 GHz Pentium IV computer. Since all of the basic maps are given explicitly in
terms of elementary maps, the speed depends only on the number of points and not
the shape of the region or the distribution of the data points. The accuracy can be
measured if the true conformal map is known. For example,

f(z) =
rz

1 − (rz)2
,

where r < 1 maps the unit disc into an inverted ellipse. See Figure 12.
The region was chosen because it almost pinches off at 0, and because the stretch-

ing/compression given by max |f ′| /min |f ′| is big for r near 1. This is sometimes
called the “crowding phenomenon.” We chose r = .95 and used as data points the
image by f of 10,000 equally spaced points on the unit circle, and we compared
the corresponding points on the unit circle computed by the geodesic algorithm with
10,000 equally spaced points. The errors were less than 1.8·10−6. The same procedure
using the zipper algorithm took 84 seconds and had errors less than 9.2 · 10−8. When
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Fig. 12. Inverted ellipse with r = .95.

the number of data points was increased to 100,000, the time to run the geodesic
algorithm increased to 25 minutes with errors less than 2 · 10−8. In this example,
the difference between successive (given) boundary data points on the inverted ellipse
ranged from .025 to 3 ·10−6 so that perhaps a better distribution of data points would
have given even smaller errors.

In practice, the choice of data points corresponding to equally spaced points on
the circle is not available. An alternative approach to this example is to select data
points on the inverted ellipse which are approximately equally spaced in arc length.
However, if we choose 10,000 points in this manner, then three consecutive points at
the inward pointing “tips” of the region form a “turning angle” of more than 100◦

because the curvature is so large. This leads to relatively large errors in the map since
the tip has large harmonic measure. Another method is to select data points so that
the “turning angle” ∣∣∣∣arg

(
zk+1 − zk
zk − zk−1

)∣∣∣∣
is not too big. This results in inaccuracies for this region because the curvature rapidly
decreases to zero near the tips, and hence the data points are not very “evenly spaced.”

A better method is to use a combination of these ideas. We generated a list of
106 points on the boundary of the inverted ellipse and then selected a subset using the
following criteria: Having selected z1, . . . , zk, choose zk+1 to be the first data point in
the list after zk satisfying ∣∣∣∣arg

(
zk+1 − zk
zk − zk−1

)∣∣∣∣ > δ

or

log

∣∣∣∣zk+1 − zk
zk − zk−1

∣∣∣∣ > δ.

To compare with our previous results, we selected δ = .0025 and thereby obtained
9,890 data points with the property that the “turning angle” is small and the ratio
of lengths of successive arcs is close to 1. We compared the points on the unit circle
obtained from the geodesic algorithm with the true inverse images. The maximal
error was less than 5.3 × 10−6. It is interesting to note that the maximal distance
between successive points on the unit circle is 4.2× 10−2 so that the errors are much
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Fig. 13. Tenerife.

smaller than the harmonic measure of the corresponding arcs. This technique can be
applied to any region where the boundary is known at a very large number of points.

Figure 13 shows the conformal map of a Carleson grid on the disc to both the
interior and exterior of the island Tenerife (Canary Islands). We chose this region to
illustrate the method on a nonsmooth region where no symmetry is involved. The
center of the interior is the volcano Teide. It also shows both the original data for the
coastline, connected with straight line segments, and the boundary curve connecting
the data points using the zipper algorithm. At this resolution, it is not possible to
see the difference between these curves. The zipper algorithm was applied to 6,168
data points and took 36 seconds. The image of 24,673 points on the unit circle took
48 seconds, and all of these points were within 9 · 10−5 of the polygon formed by
connecting the 6,168 data points. The points on the circle corresponding to the 6,168
vertices were mapped to points within 10−10 of the vertices. This error is due to the
tolerance set for Newton’s method, round-off error, and the compression/expansion of
harmonic measure. The image of 8,160 vertices in the Carleson grid took 25 seconds
to be mapped to the interior and 25 seconds to the exterior.

The first objection one might have in applying these algorithms with a large
number of data points is that compositions of even very simple analytic maps can be
quite chaotic. Indeed, this is the subject of the field of complex dynamics. We could
redefine the basic maps fa by composing with a linear fractional transformation of
the upper-half plane so that the composed map is asymptotic to z as z → ∞. This
will not affect the computed curve in these algorithms since the next basic map begins
with a linear fractional transformation (albeit altered). However, if we formulate the
basic maps in this way, then because the maps are nearly linear near ∞, the numerical
errors will accumulate only linearly.

Banjai and Trefethen [BT] adapted fast multipole techniques to the Schwarz–
Christoffel algorithm and successfully computed the conformal map to a region which
is bounded by a polygon with about 105 edges. They used a 12-fold symmetry in
the region to immediately reduce the parameter problem to size 104. Any other
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conformal mapping technique can also use symmetry and obtain a 12-fold reduction
in the number of data points required; however, their work does show at least that
Schwarz–Christoffel is possible with 104 vertices, though convergence of the algorithm
to solve the parameter problem is not always ensured. The time it takes to run the
zipper algorithm and the resulting accuracy for these snowflake regions is very close
to the timing and accuracy for the fast multipole improvements in the Schwarz–
Christoffel method. The geodesic algorithm is almost as good and has the advantage
that it is very easy to code and convergence can be proved. For a region bounded
by a polygon with a small number of vertices, where high accuracy is desired (for
instance, errors on the order of 10−14), the Schwarz–Christoffel method is preferable.
It would be interesting to try to prove convergence of the technique used in [BT]
to find the prevertices in the Schwarz–Christoffel representation for polygons which
are K-quasicircles in terms of K. It would be interesting as well to apply multipole
techniques to the zipper algorithm. A first step in this direction can be found in
Kennedy [KT].

One additional observation worth repeating in this context is that the geodesic
and zipper algorithms always compute a conformal map of H to a region bounded
by a Jordan curve passing through the data points, even if the disc-chain or pacman
conditions are not met. The image region can be found by evaluating the function
at a large number of points on the real line. By Proposition 2.5 and Corollary 3.9,
if the data points {zj} satisfy the hypotheses of Theorem 2.2 or 3.4, then ϕ can be
analytically extended to be a conformal map of the original region Ω to a region very
close to D. To do so requires careful consideration of the appropriate branch of

√
z

at each stage of the composition.
Theorems 2.2 and 3.4 and their proofs suggest how to select points on the bound-

ary of a region to give good accuracy for the mapping functions. Roughly speaking,
points need to be chosen closer together where the region comes close to folding back
on itself. See Figure 12, for example. Greater accuracy can be obtained by placing
more points on the boundary near the center and fewer on the big lobes. See also the
remarks after Theorem 5.3 in this regard. In practice, the zipper map works well if
points are distributed so that

(6.1) B(zk, 5|zk+1 − zk|) ∩ ∂Ω

is connected.
When the boundary of the given region is not smooth, then one of the processes

described in section 2 should be used to generate the boundary data, if the geodesic
algorithm is to be used. For example, if nothing is known about the boundary except
for a list of data points, then we preprocess the data by taking data points along the
line segments between the original data points, so that these new points correspond
to points of tangency of disjoint circles centered on the line segments, including circles
centered at the original data points. Note that the original boundary points are not
among these new data points. The geodesic algorithm then finds a conformal map to
a region with the new data points on the boundary. The boundary of the new region
will be close to the polygonal curve through the original data points but will not pass
through the original data points. This boundary is “rounded” near the original data
points. Indeed, it is a smooth curve.

When the boundary of the desired region is less smooth, for example, with “cor-
ners,” then the zipper or slit algorithms should be used. In this case additional points
are placed along the line segments between the data points, with at least five points
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per edge and satisfying (6.1). In practice, at least 500 points are chosen on the bound-
ary so that the image of the circle will be close to the polygonal line through the data
points. Since two data points are pulled down to the real line with each basic map
in the zipper algorithm, the original data points should occur at even numbered in-
dices in the resulting data set (the first data point is called z0). Then the computed
boundary Ωc will have corners at each of the original data points, with angles very
close to the angles of the polygon through the original data points.

Fortran programs for a version of the zipper algorithm can be obtained from [MD].
Also included is a graphics program, written in C with X-11 graphics by Mike Stark,
for the display of the conformal maps. There are also several demo programs applying
the algorithm to problems in elementary fluid flow, extremal length, and hyperbolic
geometry. Extensive testing of the geodesic algorithm [MM] and an early version
of the zipper algorithm was done in the 1980s with Morrow. In particular, that
experimentation suggested the initial function ϕ0 in the zipper algorithm which maps
the complement of a circular arc through z0, z1, and z2 onto H.

Appendix. Jørgensen’s theorem. Since Jørgensen’s theorem is a key com-
ponent of the proof of the convergence of the geodesic algorithm, we include a short
self-contained proof. It says that discs are strictly convex in the hyperbolic geometry
of a simply connected domain Ω (unless ∂Ω is contained in the boundary of the disk).

Theorem A.1 (Jørgensen [J]). Suppose Ω is a simply connected domain. If Δ
is an open disc contained in Ω and if γ is a hyperbolic geodesic in Ω, then γ ∩ Δ is
connected, and if it is nonempty, it is not tangent to ∂Δ in Ω.

Proof (see [P, pp. 91–93]). Applying a linear fractional transformation to Ω, we
replace the disc Δ by the upper-half plane H. Suppose x ∈ R and suppose that f
is a conformal map of D onto Ω such that f(0) = x and f ′(0) > 0. We will use the
auxiliary function z + 1/z, which is real-valued on ∂D ∪ (−1, 1). Then

Im

(
f ′(0)

f(z) − x
−
(

1

z
+ z

))

is a bounded harmonic function on D which is greater than or equal to 0 by the

maximum principle. Thus Im f ′(0)
f(z)−x ≥ 0 on (−1, 1), and hence Im f(z) ≤ 0 on the

diameter (−1, 1). The condition f ′(0) > 0 means that the geodesic f
(
(−1, 1)

)
is

tangent to R at x. Two circles which are orthogonal to ∂D can meet in D in at most
one point, and hence hyperbolic geodesics in simply connected domains (images of
orthogonal circles) meet in at most one point and are not tangent. Thus if γ is a
geodesic in Ω which intersects H and contains the point x, then it cannot be tangent
to R at x and cannot re-enter H after leaving it at x because it is separated from H

by the geodesic f
(
(−1, 1)

)
. The theorem follows.

In section 2, we commented that a constructive proof of the Riemann mapping
theorem followed from the proof of Theorem 2.2. The application of Jørgensen’s
theorem in the proof of Theorem 2.2 is only to domains for which the Riemann map
has been explicitly constructed.
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