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When T ∈M, replacing ϕ by ϕ ◦ T does not change the integral in (6.2)

and so we can assume

dist(ϕ(0), ∂�) ∼ diam(�). (6.9)

In that case we claim that if δ is sufficiently small, then every bad square is a

bounded hyperbolic distance from ϕ(0). By (6.9) and Lemma 6.3, that claim

will prove the theorem.

Suppose Sj is a bad square such that ϕ(z0) ∈ Sj where 1− |z0|2 is small
and where (6.3) holds at z0. If δ is small, then by Lemma 4.3 there is a Möbius

transformation

T z = A
z − z1

z − z2

such that
∣∣T − ϕ

∣∣ < ε (6.10)

on the hyperbolic ball B = {z : ρ(z, z0) ≤ b} and

(1− |z0|2)
∣∣∣T
′′(z0)

T ′(z0)

∣∣∣ ≥ ε

2
.

Hence by (4.10), the pole z2 of T satisfies

dist(z2, ∂B) ≤ |z2 − z0| ≤
4

ε
(1− |z0|2),

while for b = b(ε) fixed so that sinh(2b) = ε−2, ∂B has euclidian radius

r ≥ ε−2(1− |z0|)+ O
(
(1− |z0|)3

)
.

Consequently, if 1− |z0| is small, there are adjacent arcs I ⊂ ∂B and J ⊂ ∂B

with `(I ) = `(J ) ≥ 2√
ε
(1− |z0|) such that

`(T (I ))

`(T (J ))
≥

C

ε
.

But by (6.10), that contradicts (VII.2.5) for ϕ(∂B). �

7. The Bishop–Jones H
1
2
−η Theorem

When � is not a quasidisc the condition
∫∫

D

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy <∞ (7.1)
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of Theorem 6.2 no longer implies that ∂� is rectifiable. For example, if � is

a half-plane, then Sϕ = 0 but ∂� is not rectifiable. However in [1994] Bishop

and Jones obtained a sharp substitute theorem, and the proof of this theorem is

the key to the deeper results in this chapter.

Theorem 7.1. Let ϕ be the conformal mapping from D onto �. If

B = |ϕ′(0)| +
∫∫

D

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy <∞,

then for any η, 0 < η < 1
2
, ϕ′ ∈ H

1
2−η, and

||ϕ′||
H

1
2
−η
≤ C(η)B. (7.2)

In particular, if the Bishop–Jones integral (7.1) is finite, then ϕ has non-zero

angular derivative almost everywhere on ∂D, the cone points of ∂� have full

harmonic measure relative to�, and ω � 31 by TheoremVI.4.2. Theorem 7.1

is sharp; again the counterexample is the map ϕ from D to a half-plane.

For the applications to come, Theorem7.1will be less important than its local

versions, Theorem 7.2 and Corollary 7.3. Recall we always write g = log(ϕ′).

Theorem 7.2. Let E ⊂ ∂D be compact. Let U =
⋃

ζ∈E 0β(ζ ) be a cone do-

main, let 1 < α < β, and let ε > 0. Let ϕ be the conformal mapping from U

onto a simply connected domain � and assume that at every ζ ∈ J ⊂ E,
∫∫

0α(ζ )

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)2dxdy ≤ N <∞. (7.3)

Then there is C(N , ε) <∞ and there exists J0 ⊂ J such that |J0| ≥ (1− ε)|J |
and ∫∫

0α(ζ )

|ϕ′(z)||g′(z)|2dxdy < C(N , ε) (7.4)

at every ζ ∈ J0.

Corollary 7.3. Let E ⊂ ∂D be compact. Let U =
⋃

ζ∈E 0β(ζ ) be a cone do-

main, and let 1 < α < β. Let ϕ be the conformal mapping fromU onto a simply

connected domain �. Then at almost every ζ ∈ E for which
∫∫

0α(ζ )

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)2dxdy <∞ (7.5)
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we also have ∫∫

0α(ζ )

|ϕ′(z)||g′(z)|2dxdy <∞. (7.6)

The corollary follows by sending ε → 0 and N →∞ in Theorem 7.2. Since

F(z) =
(
ϕ′(z)

) 1
2 satisfies |F ′(z)|2 = |ϕ′(z)||g′(z)|2, Theorem 1.3 and Corol-

lary 7.3 imply ϕ has a non-zero angular derivative at almost every point where

(7.5) holds.

The converse assertion, that (7.5) holds almost everywhere (7.6) holds, is

very easy. Since g = log(ϕ′) and F =
(
ϕ′

) 1
2 we have |ϕ′||g′|2 = 4|F ′|2, so that

(7.6) implies
∫∫

0α(ζ )

∣∣F ′(z)
∣∣2dxdy <∞,

and by Lemma 1.5,
∫∫

0δ(ζ )

∣∣F ′′(z)
∣∣2(1− |z|)2dxdy <∞

for any δ, 1 < δ < α. Also recall from Section 6,

|ϕ′||Sϕ|2 ≤ 8|F ′′|2 + 8|g′|2|F ′|2.

Since ||g||B ≤ 6, we conclude that
∫∫

0δ(ζ )

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)2dxdy <∞

if (7.6) holds at ζ, and a point of density argument then implies (7.5) holds

almost everywhere that (7.6) holds.

The proof of Theorem 7.2 resembles the main argument in the proof of

Theorem 7.1 and we will prove Theorem 7.1 first and then indicate the changes

needed to get Theorem 7.2.

Proof of Theorem 7.1.. We take B = 1. Set 0(ζ ) =
{
z : |z − ζ | < 1− |z|

}
.

Given η, 0 < η < 1
2
and given λ ≥ λ0 = λ0(η) > 1, we construct a region

R ⊂ D and a compact set E ⊂ ∂D such that
⋃

ζ∈E
0(ζ ) ⊂ R, (7.7)

∣∣∂D \ E
∣∣ ≤ Cλ−1+2η, (7.8)
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and ∫∫

R

|ϕ′||g′|2(1− |z|2)dxdy ≤ Cλ, (7.9)

where the constant C in (7.8) and (7.9) depends on η but not on λ.

Assume that we have built sets R and E satisfying (7.7), (7.8), and (7.9).

Write p = 1
2
− η and as usual take F =

(
ϕ′

) 1
2 . Then ϕ′ ∈ H p if and only if

F ∈ H2p and

||ϕ′||H p = ||F ||2
H2p .

Recall the area function

AF(ζ ) =
(∫∫

0(ζ )

∣∣F ′(z)
∣∣2dxdy

) 1
2

=
(1
4

∫∫

0(ζ )

|ϕ′(z)||g′(z)|2dxdy
) 1
2
.

By Theorem 1.1 F ∈ H2p if and only if AF ∈ L2p and

||F ||H2p ≤ Cp||AF ||2p.

Since
∣∣{ζ : z ∈ 0(ζ )}

∣∣ ≤ c(1− |z|2), we have by (7.7)
∫

E

(AF)2dθ ≤ C

∫∫

R

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy,

and thus by (7.8) and (7.9),

∣∣{θ : AF(θ) > t}
∣∣ ≤

∣∣∂D \ E
∣∣+ 1

t2

∫

E

(AF)2dθ

≤ Cλ−1+2η + C
λ

t2
,

(7.10)

for all λ ≥ λ0. Take λ = t
2

2p+1 so that the two terms on the extreme right of

(7.10) are equal. Then by (7.10) there is t0 = t0(λ0) such that

||AF ||2p2p = 2p

∫ ∞

0

t2p−1
∣∣{θ : AF(θ) > t}

∣∣dt

≤ 2p

∫ t0

0

2π t2p−1dt + C

∫ ∞

t0

t
4p2−4p−1

2p+1 dt

≤ C(η)

if 0 < η < 1.
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That proves (7.2), and the proof of Theorem 7.1 is reduced to constructing

setsR and E that satisfy (7.7), (7.8), and (7.9).

We first constructR. To start put {|z| < 1
2
} ⊂ R and notice that we have

∫∫

|z|< 1
2

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy ≤ C |ϕ′(0)| (7.11)

because ||g||B ≤ 6.

As in Section 3 take the dyadic Carleson boxes

Q = {reiθ : 1− 2−n ≤ r < 1, π j2−(n+1) ≤ θ < π( j + 1)2−(n+1)},

0 ≤ j < 2n+1, of sidelength `(Q) = 2−n and their top halves

T (Q) = Q ∩ {1− 2−n ≤ r < 1− 2−(n+1)}

= Q \
⋃
{Q′ : Q′ ⊂ Q, Q′ 6= Q},

and write zQ for the center of T (Q). Fix δ and ε to be determined later. Say

Q ∈ L, for large, if

sup
T (Q)

(1− |z|2)2
∣∣Sϕ(z)

∣∣ > δ. (7.12)

When Q is large, define D(Q) = T (Q). Say Q ∈ G, for good, if Q /∈ L and

sup
T (Q)

(1− |z|2)|g′(z)| < ε.

Say Q ∈ B, for bad, if Q /∈ L and Q is not good, i.e.,

sup
T (Q)

(1− |z|2)|g′(z)| ≥ ε.

If Q /∈ L, we call Qmaximal if the next bigger Q̃ ⊃ Q, `(Q̃) = 2`(Q) satisfies

Q̃ ∈ L or if `(Q) = 1
2
.WriteM for the set of maximal Q /∈ L.When Q ∈M

define

D(Q) = Q \
⋃
{Q′ ⊂ Q, Q′ ∈ L}.

Then

{
z :

1

2
≤ |z| < 1

}
=

⋃

L∪M
D(Q), (7.13)

and the sets under this union are disjoint.
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D(Q2)

Q1

Q2

Q3

Figure X.20 Q1 ∈ L; Q2, Q3,∈M.

To complete the construction of R we consider four cases and we estimate

the contribution to (7.9) in each case.

Case I: Q ∈ L.

Put D(Q) = T (Q) ⊂ R and pass to the next level of boxes Q′ ⊂ Q with

`(Q′) = 1
2
`(Q). Since ||g||B ≤ 6, Theorem 4.1 and the Schwarz lemma yield

∫∫

T (Q)

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy

≤ C
(6

δ

)2 ∫∫

T (Q)

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy
(7.14)

for every Case I box.

Case II: Q ∈ G ∩M.

Put D(Q) ⊂ R and pass to the maximal Q′ ⊂ Q. Recall that F =
(
ϕ′

) 1
2

and 4|F ′|2 = |ϕ′||g′|2. To estimate the contribution to (7.9) in Case II we need
the inequality

∫∫

D(Q)

|ϕ′(z)|g′(z)|2(1− |z|2)dxdy

= 4

∫∫

D(Q)

|F ′(z)|2(1− |z|2)dxdy ≤ C(`(Q))3|F ′(zQ)|2

+ C

∫∫

D(Q)

|F ′′(z)|2(1− |z|2)3dxdy.

(7.15)

Because inequality (7.15) very much resembles (1.7) of Theorem 1.2 its proof

is left as an exercise. Remembering that 2|F ′′| = |F ||Sϕ + (g′)2| and that
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||g||B ≤ 6, we obtain from (7.15)
∫∫

D(Q)

|ϕ′(z)|g′(z)|2(1− |z|2)dxdy

≤ C`(Q)|ϕ′(zQ)| + C

∫∫

D(Q)

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy

+ C

∫∫

D(Q)

|ϕ′(z)||g′(z)|4(1− |z|2)3dxdy

(7.16)

in Case II. We need the following lemma.

Lemma 7.4. Assume δ < ε2

2
. If Q ∈ G, if Q′ ⊂ Q, and if Q′ ∩D(Q) 6= ∅, then

Q′ ∈ G.

Accept Lemma 7.4 for a moment. Then we can bound the last term in (7.16)

using
∫∫

D(Q)

|ϕ′(z)||g′(z)|4(1− |z|2)3dxdy ≤ ε2
∫∫

D(Q)

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy.

Therefore if Cε2 < 1 we have
∫∫

D(Q)

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy

≤ C`(Q)|ϕ′(zQ)| + C

∫∫

D(Q)

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy.
(7.17)

Consider the first term C`(Q)|ϕ′(zQ)| on the right side of (7.17). Because
Q is maximal, either `(Q) = 1/2 or Q ⊂ Q̃, `(Q̃) = 2`(Q) and (7.12) holds

for Q̃. In the first case

`(Q)|ϕ′(zQ)| ≤ c|ϕ′(0)|,

and this first case can occur for at most four squares Q. In the second case

Theorem 4.1 and the Schwarz lemma give
∫∫

T (Q)

∣∣Sϕ(z)
∣∣2(1− |z|2)3dxdy ≥ cδ2`(Q).
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Because ||g||B ≤ 6 it follows that the first term on the right-hand side of (7.17)

is majorized by a constant multiple of the second term, and hence that
∫∫

D(Q)

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy

≤
C

δ2

∫∫

D(Q)

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy.
(7.18)

Thus for Case II boxes (7.18) holds with at most four exceptions, when we

have the additional term c|ϕ′(0)|, and for (7.9) this additional term is harmless

if λ0 ≥ 1.

Proof of Lemma 7.4. Let r1e
iθ ∈ T (Q′). There is r0 ≥ 1

2
with r0e

iθ ∈ T (Q)

and [r0e
iθ , r1e

iθ ] ⊂ D(Q). Set

r = sup
{
s ≤ r1 : (1− t2)|g′(teiθ )| ≤ ε on [r0, s]

}
.

Then since

(1− t2)2|Sϕ(teiθ )| ≤ δ

(4.14) gives

|g′′(teiθ )| ≤
δ + ε2

2

(1− t2)2
<

d

dt

( ε

1− t2

)

on [r0, r ]. Therefore

(1− r2)|g′(reiθ )| < ε

and r = r1. �

The remaining two cases concern the bad boxes Q ∈ B. We begin with a

lemma that shows the bad boxes are sparsely distributed.

Lemma 7.5. Given ε > 0 and an integer n > 0, there exist C = C(ε) and

δ = δ(ε, n) such that if Q is a bad box for which

sup
T (Q)

(1− |z|2)2|Sϕ(z)| ≤ δ, (7.19)

and if

B(Q) = Q ∩ {1− |z| ≥ 2−n`(Q)} ∩ {(1− |z|2)|g′(z)| ≥ ε},

then there exists a hyperbolic geodesic σ such that

sup
B(Q)

ρ(z, σ ) < C,
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where ρ denotes hyperbolic distance inD.Moreover, given η > 0 there is δ > 0

such that if (7.19) holds for δ, then

(1− |z0|
1− |z1|

)2−η

≤
∣∣∣ϕ
′(z1)

ϕ′(z0)

∣∣∣ ≤
(1− |z0|
1− |z1|

)2+η

(7.20)

if z0 ∈ σ ∩ T (Q) and z1 ∈ σ ∩ Q ∩ {2n/2`(Q) ≤ 1− |z1| ≤ 2−n`(Q)}.

Proof. If δ is small, then by Lemma 4.3 there is a Möbius transformation T

such that |ϕ − T | is small on Q ∩ {1− |z| ≥ 2−n`(Q)}, so small in fact that

(1− |z|2)2
∣∣∣T
′′(z)

T ′(z)
− g′(z)

∣∣∣ ≤ ε

2

on Q ∩ {1− |z| ≥ 2−n`(Q)}. Let z0 ∈ T (Q) ∩ {|g′(z)|(1− |z|2) ≥ ε}, and let
z∗ be the pole of T . Then by (4.10) the conclusions of Lemma 7.5 all hold when
σ is the circular arc or thogonal to ∂D that passes through z0 and

z∗

|z∗| , because
they all hold for T .

�

Now fix n ∼ 10 and β = β(ε, δ) ∼ δ2.

Case III: Q ∈ B ∩M and

J =
∫∫

D(Q)

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy ≥ β`(Q)|ϕ′(zQ)|.

Let σ = σQ be the geodesic of Lemma 7.5 and choose points wj ∈ σ ∩ B(Q),

j = 0, 1, . . . , j0 such that w0 = z0 and 1− |wj | = 2− j (1− |z0|). If possible,
we let j∗ be the least j ≤ j0 such that

∑

j≤ j∗
(1− |wj |)|ϕ′(wj )| ∼ λJ ≥ λβ`(Q)|ϕ′(zQ))|. (7.21)

If j∗ exists we take Q∗ = Q∗(Q) ⊂ Q, Q∗ ∈ B, such that wj∗ ∈ T (Q∗) and
define D̃(Q) = D(Q) \ Q∗. If j∗ exists, then by (7.21) and the upper bound in
(7.20),

`(Q∗(Q)) ≤ Cλ−1+η`(Q). (7.22)

If no such j∗ exists and ifwj0 ∈ Q′ ⊂ Q with Q′ ∈ B, we define Q1 = Q′ and
D̃(Q) = D(Q) \ Q1. If no such j∗ exists and if no such Q′ exists, we take
D̃(Q) = D(Q). In each instance we put D̃(Q) ⊂ R.



406 X. Rectifiability and Quadratic Expressions

zQ

Q∗(Q)

σ

D(Q)

Figure X.21

By Lemmas 7.5 and 7.4 there is a cone 0 with vertex ζ ∈ σ ∩ ∂D such that

if Q′ ∈ B, Q′ ⊂ Q, and Q′ ∩ D̃(Q) 6= ∅, then there exists maximal dyadic

Q j ∈ B, Q j ⊂ Q, Q j ∩ D̃(Q) 6= ∅ such that T (Q j ) ∩ 0 6= ∅. Write
∫∫

D̃(Q)

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy =
∫∫

D̃(Q)\0

+
∫∫

D̃(Q)∩0

.

Bt extending the radial edges of each maximal Q j to 0 we partition D̃(Q) \ 0

into chord-arc domains Dj ⊃ Q j ∩ D̃(Q) \ 0 with uniformly bounded chord-

arc constants. Choose z j ∈ 0 ∩ ∂Dj . Then by the proof for Case II and Har-

nack’s inequality,
∫∫

D̃(Q)

|ϕ′(z)||g′(z)|2(1−|z|2)dxdy =
∑∫∫

Dj

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy

+
∫∫

D̃(Q)∩0

|ϕ′(z)||g′(z)|2(1−|z|2)dxdy

≤
∑∫∫

Dj

|ϕ′(z)||Sϕ(z)|2(1−|z|2)3dxdy

+
∑

(1− |z j |2)|ϕ′(z j )|

+
∫∫

D̃(Q)∩0

|ϕ′(z)||g′(z)|2(1−|z|2)dxdy.
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The values 1− |z j | decrease geometrically and each z j is a bounded hy-

perbolic distance from the geodesic σ. Therefore by Harnack’s inequality and

(7.21),
∑

(1− |z j |2)|ϕ′(z j )| ≤ C
∑

j≤ j∗
(1− |wj |2)|ϕ′(wj )| ≤ CλJ.

Harnack’s inequality also gives
∫∫

D̃(Q)∩0

|ϕ′(z)||g′(z)|(1− |z|2)dxdy ≤ C
∑

(1− |wj |2)|ϕ′(wj )| ≤ CλJ.

Since λ > 1, we therefore have
∫∫

D̃(Q)

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy

≤ Cλ

∫∫

D̃(Q)

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy
(7.23)

if Q is a Case III box and if j∗ exists.
If no such j∗ exists and if there is no Q′ ⊂ Q with Q′ ∈ B and wj0 ∈ Q′,

we stop the sum at j0 and we still obtain (7.23). Finally, if no j∗ exists but
if wj0 ∈ Q′ ∈ B, Q′ ⊂ Q, we repeat the construction with Q replaced by

Q1 = Q′ and with a possibly new geodesic σ1 containing wj0 ∈ Q1, pos-

sibly constructing a new Q∗1 or a new Q′1 = Q2, and we obtain (7.23) for

D̃(Q1). We repeat the construction until we reach a case where a square

Q∗m is defined or a case where neither Q∗m nor Q′m is defined. If we reach

a square Q∗m we define Q∗(Q) = Q∗m . Then (7.22) holds for Q
∗(Q). We put

D̃(Q) = D(Q) \ Q∗(Q) =
⋃

D̃(Q j ) into R. Note that (7.23) holds for each

set D̃(Q j ) and that these sets are disjoint.

Case IV: Q ∈ B ∩M and

J =
∫∫

D(Q)

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy < β|ϕ′(zQ)|`(Q).

Since β ≤ cδ2, this case can only occur if `(Q) = 1/2, and thus for at most

four boxes Q. Define Q∗ by Q∗ ∩ σ 6= ∅ and

`(Q∗)|ϕ′(zQ∗)| ∼ λ`(Q)|ϕ′(zQ)| (7.24)

and take D̃(Q) = D(Q) \ Q∗. If no such Q∗ exists take D̃(Q) = D(Q). Put

D̃(Q) ⊂ R and do not consider any smaller Q′ ⊂ Q. The argument used in
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Case III yields
∫∫

D̃(Q)

|ϕ′(z)||g′(z)|2(1− |z|2)dxdy ≤ Cλ|ϕ′(0)|,

which is good enough because there are at most four such Q.

Proof of (7.7) and (7.9). By (7.13) we have

R = D \
⋃
{Q∗(Q) : Q ∈ B ∩M}.

Since |ϕ′(0)| ≤ 6, (7.11), (7.14), (7.18), (7.24), and the many cases of (7.23)

give (7.9) for R provided λ ≥ B. Let I ∗(Q) ⊂ ∂D be the base of Q∗(Q) and

set

E = ∂D \
⋃
{3I ∗(Q) : Q ∈ B ∩M}. (7.25)

Then (7.7) holds on E .

Proof of (7.8). To prove (7.8) we need an additional lemma.

Lemma 7.6. Given η > 0 there is C = C(η) such that if Q ∈ B ∩M and if

Q∗(Q) exists, then

`(Q) ≤ Cλη`(∂D(Q) ∩ ∂D). (7.26)

Proof of Lemma 7.6. By hypothesis and by (7.20) there exists Q∗∗,
Q∗(Q) ⊂ Q∗∗ ⊂ Q, such that

|ϕ′(zQ∗∗)|`(Q∗∗) ∼ λη J, (7.27)

and by the lower bound in (7.20)

`(Q∗∗) ≥ Cλ−η`(Q). (7.28)

Consider the chord-arc domain � = Q∗∗ ∩D(Q). By (7.27) and Corollary

I.4.4, diam(ϕ(�)) ≥ Cλη J. By TheoremM.1 applied to F = (ϕ′)
1
2 and by the

proof of (7.22),

`(ϕ(∂�)) ≤ C |ϕ′(zQ∗∗)|`(Q∗∗)+ CλJ ≤ C ′|ϕ′(zQ∗∗)|`(Q∗∗).

Let E = {Q′ ∈ L : ∂T (Q′) ∩ ∂� 6= ∅} and A = ∂� ∩
⋃

E ∂T (Q′). Then by

(7.12) and the Schwarz lemma,

`(ϕ(A)) =
∫

A

|ϕ′(z)|ds

≤ C
∑

E

∫∫

T (Q′)

|ϕ′(z)|
∣∣Sϕ(z)

∣∣2(1− |z|2)3dxdy ≤ J.
(7.29)
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Since ∂ϕ(�) has length and diameter comparable to λη J it follows

from (7.29) and the Lavrentiev estimate (5.1) of Chapter VI that

ω(zQ∗∗ , A, �) = ω(ϕ(zQ∗∗ , ϕ(A), ϕ(�)) is small provided λ ≥ λ0(η). Then

since� is a chord-arc domain with bounded constants, we conclude that `(A)
`(Q∗∗)

is small and hence that

`(∂� ∩ ∂D) ≥ c`(Q∗∗),

and with (7.28) this implies (7.26). �

Finally, note that because the sets {∂D(Q) ∩ ∂D : Q ∈ B ∩M} are pairwise
disjoint, (7.26) and (7.22) give the inequality (7.8).

�

Proof of Theorem 7.2. A point of density argument shows that there exists

J1 ⊂ J , |J1| ≥ (1− ε
3
)|J | such that ifW =

⋃
J1

0β(ζ ), then∫∫

W

|ϕ′(z)||Sϕ(z)|2(1− |z|2)3dxdy

≤ C

∫

J1

∫∫

0α(ζ )

|ϕ′(z)||Sϕ(z)|2(1− |z|2)2dxdyds(ζ ) ≤ CN .

Set

D =
⋃

ζ∈J1

0β(ζ )

and

V =
⋃
{T (Q) : T (Q) ⊂ D}.

ThenV ⊂ D. DefineL,M,G, andB as in the proof of Theorem 7.1, but include

only those T (Q) such that T (Q) ⊂ D. For such Q define

D(Q) = V ∩ Q \
⋃
{Q′ ⊂ Q ∩D : Q′ ∈ L}.

Then the proof of Theorem 7.1 yields a set E ⊂ J1, defined by (7.25) and a

regionR ⊂ V so that (7.7), (7.8), and (7.9) hold, and so that |E | ≥ (1− ε
3
)|J |

and another point of density argument gives J0 ⊂ E forwhich |J0| ≥ (1− ε)|J |
and for which (7.4) holds. �
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8. Schwarzians and BMO Domains

Recall that a simply connected domain� is called aBMOdomain if themapping

function ϕ : D → � satisfies

g = log(ϕ′) ∈ BMO.

The results in this chapter yield two characterizations of BMO domains that

complement Theorem VII.5.3.

Theorem 8.1. The following are equivalent.

(a) � is a BMO domain.

(b) There exist δ > 0 and C > 0 such that for all z0 ∈ � there is a subdomain

U ⊂ � such that

(i) z0 ∈ U ,

(ii) ∂U is rectifiable and `(∂U) ≤ Cdist(z0, ∂�), and

(iii) ω(z0, ∂� ∩ ∂U,U) ≥ δ.

(c) There exist δ > 0 and C > 0 such that for all z0 ∈ � there is a subdomain

U ⊂ � such that

(i) z0 ∈ U and dist(z0, ∂�) ≤ C dist(z0, ∂U),

(ii) ∂U is chord-arc with constant at most C and `(∂U) ≤ C dist(z0, ∂�),

and

(iii) `(∂� ∩ ∂U) ≥ δ dist(z0, ∂�).

(d) |Sϕ(z)|2(1− |z|2)3dxdy is a Carleson measure on D.

(e) There exist δ > 0 and C > 0 such that for every z0 ∈ D there exists a

Lipschitz domain V ⊂ D such that

(i) z0 ∈ V,

(ii) ω(z0, ∂V ∩ ∂D,V) ≥ δ, and

(iii)

∫∫

V

|ϕ′(z)||Sϕ(z)|2(1− |z|2)3dxdy ≤ C |ϕ′(z0)|(1− |z0|2).

Proof. TheoremVII.5.3 had the implications (a)H⇒ (b)H⇒ (c)H⇒ (a). Here

we use the arguments of the previous section to treat (a)⇐⇒ (d), (a) H⇒ (e),

and (e) H⇒ (b).

(a) H⇒ (d): This was first observed by Zinsmeister [1984]. By (4.14) we

have

|S(ϕ)| ≤
|g′|2

2
+ |g′′|.

It follows from (a) that |g′(z)|2(1− |z|2)dxdy is a Carleson measure and hence
|g′(z)|4(1− |z|2)3dxdy is also a Carleson measure, because g ∈ B. For any
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analytic function we have
∫∫

T (Q)

|g′′(z)|2(1− |z|2)3dxdy ≤ C

∫∫

T̃ (Q)

|g′(z)|2(1− |z|2)dxdy,

where T̃ (Q) = {z : dist(z, T (Q)) ≤ `(Q)/4}. Thus |g′′(z)|2(1− |z|2)3dxdy
is also a Carleson measure and (d) holds.

(d) H⇒ (a): This is due to Astala and Zinsmeister [1991]. Because (a) and

(d) are invariant under conformal self maps of D, to prove (a) it is enough to

show ∫
|g(eiθ )− g(0)|2dθ ≤ C. (8.1)

See Garnett [1981]. Let

A =
∫∫

D

|g′(z)|2(1− |z|2)dxdy

and

B =
∫∫

D

|g′′(z)|2(1− |z|2)3dxdy.

Then since |g′(0)| ≤ 6 we have by Fourier series,

B ≤ 12A ≤ 3B + 63π (8.2)

and by Theorem 1.2 it will be enough to show B ≤ C ′.
By (4.14) we have

B ≤ 2

∫∫

D

|Sϕ(z)|2(1− |z|2)3dxdy +
1

2

∫∫

D

|g′(z)|4(1− |z|2)3dxdy.

(8.3)

Set U = {z ∈ D : |g′(z)|(1− |z|2) ≤ 1/2}. Then by (8.2)
∫∫

U

|g′(z)|4(1− |z|2)3dxdy ≤
A

4
≤

B

12
+

9

2
π. (8.4)

Set V =
⋃
{T (Q) : supT (Q) |Sϕ(z)|(1− |z|2)2 ≥ δ} where δ = δ(1/4, 10)

from Lemma 7.5. Then because ||g||B ≤ 6,
∫∫

V

|g′(z)|4(1− |z|2)3dxdy ≤
C

δ2

∫∫

V

|Sϕ(z)|2(1− |z|2)3dxdy. (8.5)

If T (Q) \ (U ∪ V ) 6= ∅ then by Lemma 7.5 more than half of the

Q′ ⊂ Q with `(Q′) = 2−10`(Q) satisfy T (Q′) ⊂ (U ∪ V ). Consequently
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D \ (U ∪ V ) ⊂
⋃

T (Q j ), where {Q j } is a sequence of Carleson boxes with∑
`(Q j ) ≤ C ′′, with C ′′ independent of ϕ. Hence
∫∫

D\(U∪V )

|g′(z)|4(1− |z|2)3dxdy ≤
∑

j

C

∫∫

T (Q j )

(1− |z|2)−1dxdy ≤ C ′′.

(8.6)

Together (8.3), (8.4), (8.5), and (8.6) give us

23

24
B ≤

(
2+

C

δ2

) ∫∫

D

|Sϕ(z)|2(1− |z|2)3dxdy +
9

4
π + C ′′,

which establishes (8.1).

(d) and (a) H⇒ (e): Because (e) is invariant under Möbius self maps of D,

we can suppose z0 = 0. Then let V be the Lipschitz region constructed in the

proof of (a)H⇒ (b) from Theorem VII.5.3 and note that |ϕ′| is bounded above
and below on V. Then use (d).

(e)H⇒ (b):Wemay assume z0 = ϕ(0).We repeat the proof of Theorem 7.1,

with D replaced by the Lipschitz domain V given by (e), just as we did in

the proof of Theorem 7.2. We obtain a Lipschitz domain R ⊂ V such that∫
∂R
|ϕ′|ds <∞,with 0 ∈ R and with ω(0, ∂D ∩ ∂R,R) ≥ δ

2
. Then (b) holds

for U = ϕ(R). �

9. Angular Derivatives

Let ϕ be a conformal mapping from D onto a simply connected domain � and

let

G = {ζ ∈ ∂D : ϕ has an angular derivative at ζ and |ϕ′(ζ )| 6= 0}.

In this section we give several almost everywhere characterizations of G. By

Theorem VI.6.1 we already know that ζ ∈ G is almost everywhere equivalent

to

ϕ(ζ ) is a cone point of �. (9.1)

Furthermore, for any α > 1, ζ ∈ G is almost everywhere equivalent to
∫∫

0α(ζ )

∣∣ϕ′′(z)
∣∣2dxdy <∞, (9.2)

by the theorem of Marcinkiewicz, Zygmund, and Spencer, Theorem 1.3 above.

Bishop and Jones [1994] gives several other almost everywhere characteriza-


