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A well studied special case of bin packing is the 3-partition problem, where n items of size > 1
4

have to be packed in a minimum number of bins of capacity one. The famous Karmarkar-Karp
algorithm transforms a fractional solution of a suitable LP relaxation for this problem into an
integral solution that requires at most O(logn) additional bins.

The three-permutations-problem of Beck is the following. Given any 3 permutations on n
symbols, color the symbols red and blue, such that in any interval of any of those permutations,
the number of red and blue symbols is roughly the same. The necessary difference is called the
discrepancy.

We establish a surprising connection between bin packing and Beck’s problem: The additive in-
tegrality gap of the 3-partition linear programming relaxation can be bounded by the discrepancy
of 3 permutations.

This connection yields an alternative method to establish an O(logn) bound on the additive
integrality gap of the 3-partition. Reversely, making use of a recent example of 3 permutations, for
which a discrepancy of Ω(logn) is necessary, we prove the following: The O(log2 n) upper bound
on the additive gap for bin packing with arbitrary item sizes cannot be improved by any technique
that is based on rounding up items. This lower bound holds for a large class of algorithms including
the Karmarkar-Karp procedure.

Categories and Subject Descriptors: F.2.2 [Computations on discrete structures]: Non-
numerical Algorithms and Problems

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Bin packing, linear programming relaxations, discrepancy
theory

1. INTRODUCTION

The bin packing problem is the following. Given n items of size s1, . . . , sn ∈ [0, 1]
respectively, the goal is to pack these items in as few bins of capacity one as pos-
sible. Bin packing is a fundamental problem in Computer Science with numerous

1A preliminary version of this paper appeared in SODA’11 [10].
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within the Feodor Lynen program, by ONR grant N00014-11-1-0053 and by NSF contract CCF-
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applications in theory and practice.
The development of heuristics for bin packing with better and better performance

guarantee is an important success story in the field of Approximation Algorithms.
Johnson [16; 17] has shown that the First Fit algorithm requires at most 1.7 ·
OPT +1 bins and that First Fit Decreasing yields a solution with 11

9 OPT +4 bins
(see [8] for a tight bound of 11

9 OPT + 6
9 ). An important step forward was made by

Fernandez de la Vega and Luecker [11] who provided an asymptotic polynomial time
approximation scheme for bin packing. The rounding technique that is introduced
in their paper has been very influential in the design of PTAS’s for many other
difficult combinatorial optimization problems.
In 1982, Karmarkar and Karp [18] proposed an approximation algorithm for bin

packing that can be analyzed to yield a solution using at most OPT + O(log2 n)
bins. This seminal procedure is based on the Gilmore Gomory LP relaxation [13;
9]:

min
∑

p∈P xp
∑

p∈P p · xp ≥ 1

xp ≥ 0 ∀p ∈ P
(LP)

Here 1 = (1, . . . , 1)T denotes the all ones vector and P = {p ∈ {0, 1}n : sT p ≤ 1}
is the set of all feasible patterns, i.e. every vector in P denotes a feasible way to
pack one bin. Let OPT and OPTf be the value of the best integer and fractional
solution respectively. The linear program (LP) has an exponential number of vari-
ables but still one can compute a basic solution x with 1

Tx ≤ OPTf + δ in time
polynomial in n and 1/δ [18] using the Grötschel-Lovász-Schrijver variant of the
Ellipsoid method [14].
The procedure of Karmarkar and Karp [18] yields an additive integrality gap of

O(log2 n), i.e. OPT ≤ OPTf + O(log2 n), see also [27]. This corresponds to an
asymptotic FPTAS5 for bin packing. The authors in [22] conjecture that even
OPT ≤ ⌈OPTf⌉ + 1 holds and this even if one replaces the right-hand-side 1 by
any other positive integral vector b. This Modified Integer Round-up Conjecture
was proven by Sebő and Shmonin [23] if the number of different item sizes is at
most 7. We would like to mention that Jansen and Solis-Oba [15] recently provided
an OPT + 1 approximation-algorithm for bin packing if the number of item sizes
is fixed.
Much of the hardness of bin packing seems to appear already in the special

case of 3-partition, where 3n items of size 1
4 < si <

1
2 with

∑3n
i=1 si = n have to

be packed. It is strongly NP-hard to distinguish between OPT ≤ n and OPT ≥
n + 1 [12]. No stronger hardness result is known for general bin packing. A
closer look into [18] reveals that, with the restriction si >

1
4 , the Karmarkar-Karp

algorithm uses OPTf +O(log n) bins6.

5An asymptotic fully polynomial time approximation scheme (AFPTAS) is an approximation
algorithm that produces solutions of cost at most (1 + ε)OPT + p(1/ε) in time polynomial in n
and 1/ε, where also p must be a polynomial.
6The geometric grouping procedure (Lemma 5 in [18]) discards items of size O(log 1

smin
), where

smin denotes the size of the smallest item. The geometric grouping is applied O(logn) times in
the Karmarkar-Karp algorithm. The claim follows by using that smin > 1

4
for 3-partition.
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Discrepancy theory.

Let [n] := {1, . . . , n} and consider a set system S ⊆ 2[n] over the ground set [n]. A
coloring is a mapping χ : [n] → {±1}. In discrepancy theory, one aims at finding
colorings for which the difference of “red” and “blue” elements in all sets is as small
as possible. Formally, the discrepancy of a set system S is defined as

disc(S) = min
χ:[n]→{±1}

max
S∈S

|χ(S)|.

where χ(S) =
∑

i∈S χ(i). A random coloring provides an easy bound of disc(S) ≤
O(

√

n log |S|) [20]. The famous “Six Standard Deviations suffice” result of Spencer [24]

improves this to disc(S) ≤ O(
√

n log(2|S|/n)).
If every element appears in at most t sets, then the Beck-Fiala Theorem [3]

yields disc(S) < 2t. The same authors conjecture that in fact disc(S) = O(
√
t).

Srinivasan [26] gave a O(
√
t logn) bound, which was improved by Banaszczyk [1]

to O(
√
t logn). Many such discrepancy proofs are purely existential, for instance

due to the use of the pigeonhole principle. In a very recent breakthrough Bansal [2]
showed how to obtain the desired colorings for the Spencer [24] and Srinivasan [26]
bounds by considering a random walk, guided by the solution of a semidefinite
program.
For several decades, the following three-permutations-conjecture or simply Beck’s

conjecture (see Problem 1.9 in [4]) was open:

Given any 3 permutations on n symbols, one can color the symbols with
red and blue, such that in every interval of every of those permutations,
the number of red and blue symbols differs by O(1).

Formally, a set of permutations π1, . . . , πk : [n] → [n] induces a set-system7

S = {{πi(1), . . . , πi(j)} : j = 1, . . . , n; i = 1, . . . , k}.
We denote the maximum discrepancy of such a set-system induced by k permu-
tations over n symbols as Dperm

k (n), then Beck’s conjecture can be rephrased as
Dperm

3 (n) = O(1). One can provably upper bound Dperm
3 (n) by O(log n) and more

generally Dperm
k (n) can be bounded by O(k logn) [5] and by O(

√
k logn) [26; 25]

using the so-called entropy method.
But very recently a counterexample to Beck’s conjecture was found by Newman

and Nikolov [21] (earning a prize of 100 USD offered by Joel Spencer)8. In fact,
they fully settle the question by proving that Dperm

3 (n) = Θ(logn).

Our contribution.

The first result of this paper is the following theorem.

Theorem 1. The additive integrality gap of the linear program (LP) restricted
to 3-partition instances is bounded by 6 ·Dperm

3 (n).

7We only consider intervals of permutations that start from the first element. Since any interval
is the difference of two such prefixes, this changes the discrepancy by a factor of at most 2.
8The counterexample was announced few months after SODA’11. As a small anecdote, both
authors of [21] had a joint paper [6] on a related topic, which was presented in the same session
of SODA’11 as the conference version of this paper.
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This result is constructive in the following sense. If one can find a α discrepancy
coloring for any three permutations in polynomial time, then there is anOPT+O(α)
approximation algorithm for 3-partition.
The proof of Theorem 1 itself is via two steps.

i) We show that the additive integrality gap of (LP) is at most twice the maximum
linear discrepancy of a k-monotone matrix if all item sizes are larger than
1/(k + 1) (Section 3). This step is based on matching techniques and Hall’s
theorem.

ii) We then show that the linear discrepancy of a k-monotone matrix is at most k
times the discrepancy of k permutations (Section 4). This result uses a theorem
of Lovász, Spencer and Vesztergombi.

The theorem then follows by setting k equal to 3 in the above steps.
Furthermore, we show that the discrepancy of k permutations is at most 4 times

the linear discrepancy of a k-monotone matrix. Moreover in Section 5, we provide
a 5k · log2(2min{m,n}) upper bound on the linear discrepancy of a k-monotone
n×m-matrix.
Recall that most approximation algorithms for bin packing or corresponding gen-

eralizations rely on “rounding up items”, i.e. they select some patterns from the
support of a fractional solution which form a valid solution to a dominating in-
stance. Reversing the above connection, we can show that no algorithm that is
only based on this principle can obtain an additive integrality of o(logn) for item
sizes > 1

4 and o(log2 n) for arbitrary item sizes (see Section 6). This still holds if
we allow to discard and greedily pack items. More precisely:

Theorem 2. For infinitely many n, there is a bin packing instance s1 ≥ . . . ≥
sn > 0 with a feasible fractional (LP) solution y ∈ [0, 1]P such that the following
holds: Let x ∈ ZP

≥0 be an integral solution and D ⊆ [n] be those items that are not
covered by x with the properties:

—Use only patterns from fractional solution: supp(x) ⊆ supp(y).

—Feasibility: ∃σ : [n] \ D → [n] with σ(i) ≤ i and
∑

p:i∈p xp ≥ |σ−1(i)| for all
i ∈ {1, . . . , n}.

Then one has 1
Tx+ 2

∑

i∈D si ≥ 1
T y +Ω(log2 n).

Improving the Karmarkar-Karp algorithm has been a longstanding open problem
for many decades now. Our result shows that the recursive rounding procedure of
the algorithm is optimal. In order to break the O(log2 n) barrier it does not suffice
to consider only the patterns that are contained in an initial fractional solution as
it is the case for the Karmarkar-Karp algorithm.

2. PRELIMINARIES

We first review some further necessary preliminaries on discrepancy theory. We
refer to [20] for further details.
If A is a matrix, then we denote the ith row of A by Ai and the jth entry in

the ith row by Aij . The notation of discrepancy can be naturally extended to real

ACM Journal Name, Vol. V, No. N, Month 20YY.



· 5

matrices A ∈ Rm×n as

disc(A) := min
x∈{0,1}n

‖A(x− 1/2 · 1)‖∞,

see, e.g. [20]. Note that if A is the incidence matrix of a set system S (i.e. each row of
A corresponds to the characteristic vector of a set S ∈ S), then disc(A) = 1

2disc(S),
hence this notation is consistent — apart from the 1

2 factor.
The linear discrepancy of a matrix A ∈ Rm×n is defined as

lindisc(A) := max
y∈[0,1]n

min
x∈{0,1}n

‖Ax−Ay‖∞.

This value can be also described by a two player game. The first player chooses a
fractional vector y, then the second player chooses a 0/1 vector x. The goal of the
first player is to maximize, of the second to minimize ‖Ax−Ay‖∞. The inequality
disc(A) ≤ lindisc(A) holds by choosing y := (1/2, . . . , 1/2). One more notion of
defining the “complexity” of a set system or a matrix is that of the hereditary
discrepancy:

herdisc(A) := max
B submatrix of A

disc(B).

Notice that one can assume that B is formed by choosing a subset of the columns
of A. This parameter is obviously at least disc(A) since we can choose B := A and
in [19] even an upper bound for lindisc(A) is proved (see again [20] for a recent
description).

Theorem 3 (Lovász, Spencer, Vesztergombi). For A ∈ Rm×n one has

lindisc(A) ≤ 2 · herdisc(A).

3. BOUNDING THE GAP VIA THE DISCREPANCY OF MONOTONE MATRICES

A matrix A is called k-monotone if all its column vectors have non-decreasing
entries from 0, . . . , k. In other words A ∈ {0, . . . , k}m×n and A1j ≤ . . . ≤ Amj for
any column j. We denote the maximum linear discrepancy of such matrices by

Dmon
k (n) := max

A∈Z
m×n

k-monotone

lindisc(A).

The next theorem establishes step i) mentioned in the introduction.

Theorem 4. Consider the linear program (LP) and suppose that the item sizes
satisfy s1, . . . , sn > 1

k+1 . Then

OPT ≤ OPTf +

(

1 +
1

k

)

Dmon

k (n).

Proof. Assume that the item sizes are sorted such that s1 ≥ . . . ≥ sn. Let y
be any optimum basic solution of (LP) and let p1, . . . , pm be the list of patterns.
Since y is a basic solution, its support satisfies |{i : yi > 0}| ≤ n. Hence by deleting
unused patterns, we may assume9 that m = n.

9In case that there are less than n patterns, we add empty patterns.
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We define B = (p1, . . . , pn) ∈ {0, 1}n×n as the matrix composed of the patterns

as column vectors. Clearly By = 1. Let A be the matrix that is defined by
Ai :=

∑i
j=1 Bj , again Ai denotes the ith row of A. In other words, Aij denotes

the number of items of types 1, . . . , i in pattern pj . Since By = 1 we have Ay =
(1, 2, 3, . . . , n)T . Each column of A is monotone. Furthermore, since no pattern
contains more than k items one has Aij ∈ {0, . . . , k}, thus A is k-monotone.
We attach a row An+1 := (k, . . . , k) as the new last row of A. Clearly A remains

k-monotone. There exists a vector x ∈ {0, 1}n with

‖Ax−Ay‖∞ ≤ lindisc(A) ≤ Dmon
k (n).

We buy xi times pattern pi and Dmon
k (n) times the pattern that only contains the

largest item of size s1.
It remains to show: (1) this yields a feasible solution; (2) the number of patterns

does not exceed the claimed bound of OPTf + (1 + 1
k ) ·Dmon

k (n).
For the latter claim, recall that the constraint emerging from row An+1 =

(k, . . . , k) together with
∑n

i=1 yi = OPTf provides

k

n∑

i=1

xi ≤ k ·
n∑

i=1

yi +Dmon
k (n) = k · OPTf +Dmon

k (n).

We use this to upper bound the number of opened bins by

n∑

i=1

xi +Dmon
k (n) ≤ OPTf +

(

1 +
1

k

)

·Dmon
k (n).

It remains to prove that our integral solution is feasible. To be more precise, we
need to show that any item i can be assigned to a space reserved for an item of size
si or larger.

N(V ′)

v1

v2

vi

vn

...

...

V ′

u1 b1 = B1x+Dmon
k (n)

u2 b2 = B2x

ui bi = Bix

un bn = Bnx

...

...

V U

Fig. 1. The bipartite graph in the proof of Theorem 4

To this end, consider a bipartite graph with nodes V = {v1, . . . , vn} on the left,
representing the items. The nodes on the right are the set U = {u1, . . . , un}, where
ACM Journal Name, Vol. V, No. N, Month 20YY.
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each ui is attributed with a multiplicity bi representing the number of times that
we reserve space for items of size si in our solution, see Figure 1. Recall that

bi =

{

Bix+Dmon
k (n) if i = 1

Bix otherwise
.

We insert an edge (vi, uj) for all i ≥ j. The meaning of this edge is the following.
One can assign item i into the space which is reserved for item j since si ≤ sj .
We claim that there exists a V -perfect matching, respecting the multiplicities of
U . By Hall’s Theorem, see, e.g. [7], it suffices to show for any subset V ′ ⊆ V that
the multiplicities of the nodes in N(V ′) (the neighborhood of V ′) are at least |V ′|.
Observe that N(vi) ⊆ N(vi+1), hence it suffices to prove the claim for sets of the
form V ′ = {1, . . . , i}. For such a V ′ one has

∑

uj∈N(V ′)

bj = Dmon
k (n) +

i∑

j=1

Bjx = Dmon
k (n) +Aix ≥ Aiy = i

and the claim follows.

4. BOUNDING THE DISCREPANCY OF MONOTONE MATRICES BY THE DIS-
CREPANCY OF PERMUTATIONS

In this section, we show that the linear discrepancy of k-monotone matrices is
essentially bounded by the discrepancy of k permutations. This corresponds to
step ii) in the proof of the main theorem. By Theorem 3 it suffices to bound the
discrepancy of k-monotone matrices by the discrepancy of k permutations times a
suitable factor.
We first explain how one can associate a permutation to a 1-monotone matrix.

Suppose that B ∈ {0, 1}m×n is a 1-monotone matrix. If Bj denotes the j-th column
of B, then the permutation π that we associate with B is the (not necessarily
unique) permutation that satisfies Bπ(1) ≥ Bπ(2) ≥ · · · ≥ Bπ(n) where u ≥ v for
vectors u, v ∈ Rm if ui ≥ vi for all 1 ≤ i ≤ m. On the other hand the matrix
B (potentially plus some extra rows and after merging identical rows) gives the
incidence matrix of the set-system induced by π.
A k-monotone matrix B can be decomposed into a sum of 1-monotone matrices

B1, . . . , Bk. Then any Bℓ naturally corresponds to a permutation πℓ of the columns
as we explained above. A low-discrepancy coloring of these permutations yields a
coloring that has low discrepancy for any Bℓ and hence also for B, as we show now
in detail.

Theorem 5. For any k, n ∈ N, one has Dmon

k (n) ≤ k ·Dperm

k (n).

Proof. Consider any k-monotone matrix A ∈ Zm×n. By virtue of Theorem 3,
there is am×n′ submatrix, B, of A such that lindisc(A) ≤ 2·disc(B), thus it suffices
to show that disc(B) ≤ k

2 ·Dperm
k (n). Of course, B itself is again k-monotone.

Let Bℓ also be a m× n′ matrix, defined by

Bℓ
ij :=

{

1 if Bij ≥ ℓ

0, otherwise.

ACM Journal Name, Vol. V, No. N, Month 20YY.
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The matrices Bℓ are 1-monotone, and the matrix B decomposes into B = B1+. . .+
Bk. As mentioned above, for any ℓ, there is a (not necessarily unique) permutation
πℓ on [n′] such that Bℓ,πℓ(1) ≥ Bℓ,πℓ(2) ≥ . . . ≥ Bℓ,πℓ(n

′), where Bℓ,j denotes the
jth column of Bℓ. Observe that the row vector Bℓ

i is the characteristic vector of
the set {πℓ(1), . . . , πℓ(j)}, where j denotes the number of ones in Bℓ

i .
Let χ : [n′] → {±1} be the coloring that has discrepancy at most Dperm

k (n)
with respect to all permutations π1, . . . , πk. In particular |Bℓ

iχ| ≤ Dperm
k (n), when

interpreting χ as a ±1 vector. Then by the triangle inequality

disc(B) ≤ 1

2
‖Bχ‖∞ ≤ 1

2

k∑

ℓ=1

‖Bℓχ‖∞ ≤ k

2
Dperm

k (n).

Combining Theorem 4 and Theorem 5, we conclude

Corollary 6. Given any bin packing instance with n items of size bigger than
1

k+1 one has

OPT ≤ OPTf + 2k ·Dperm

k (n).

In particular, this proves Theorem 1, our main result.

Bounding the discrepancy of permutations in terms of the discrepancy of monotone
matrices

In addition we would like to note that the discrepancy of permutations can be also
bounded by the discrepancy of k-monotone matrices as follows.

Theorem 7. For any k, n ∈ N, one has Dperm

k (n) ≤ 4 ·Dmon

k (n).

Proof. We will show that for any permutations π1, . . . , πk on [n], there is a kn×
n k-monotone matrix C with disc(π1, . . . , πk) ≤ 4 · disc(C). Let Σ ∈ {1, . . . , n}kn
be the string which we obtain by concatenating the k permutations. That means
Σ = (π1(1), . . . , π1(n), . . . , πk(1), . . . , πk(n)). Let C the matrix where Cij is the
number of appearances of j ∈ {1, . . . , n} among the first i ∈ {1, . . . , kn} entries of
Σ. By definition, C is k-monotone, in fact it is the “same” k-monotone matrix as
in the previous proof.
Choose y := (12 , . . . ,

1
2 ) to have Cy = (12 , 1, . . . ,

kn
2 ). Let x ∈ {0, 1}n be a vector

with ‖Cx− Cy‖∞ ≤ disc(C). Consider the coloring χ : [n] → {±1} with χ(j) := 1
if xj = 1 and χ(j) := −1 if xj = 0. We claim that the discrepancy of this
coloring is bounded by 4 · disc(C) for all k permutations. Consider any prefix
S := {πi(1), . . . , πi(ℓ)}. Let r = C(i−1)n+ℓ ∈ {i − 1, i}n be the row of C that
corresponds to this prefix. With these notations we have

|χ(S)| ≤ |(r − (i− 1)1) · (2x− 2y)| ≤ 2 ·
(
|r(x − y)|
︸ ︷︷ ︸

≤disc(C)

+ |k · 1(x− y)|
︸ ︷︷ ︸

≤disc(C)

)
≤ 4 · disc(C).

Here the inequality |(k · 1) · (x − y)| ≤ disc(C) comes from the fact that k · 1 =
(k, . . . , k) is the last row of C.
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5. A BOUND ON THE DISCREPANCY OF MONOTONE MATRICES

Finally, we want to provide a non-trivial upper bound on the linear discrepancy of
k-monotone matrices. The result of Spencer, Srinivasan and Tetali [25; 26] together
with Theorem 5 yields a bound of Dmon

k (n) = O(k3/2 logn). This bound can be
reduced by a direct proof that shares some similarities with that of Bohus [5]. Note
that Dmon

k (n) ≥ k/2, as the k-monotone 1× 1 matrix A = (k) together with target
vector y = (1/2) witnesses.

Theorem 8. Consider any k-monotone matrix A ∈ Zn×m. Then

lindisc(A) ≤ 5k · log2(2min{n,m}).
Proof. If n = m = 1, lindisc(A) ≤ k

2 , hence the claim is true. Let y ∈ [0, 1]m

by any vector. We can remove all columns i with yi = 0 or yi = 1 and then apply
induction (on the size of the matrix). Next, if m > n, i.e. the number of columns is
bigger then the number of constraints, then y is not a basic solution of the system

Ay = b

0 ≤ yi ≤ 1 ∀i = 1, . . . ,m.

We replace y by a basic solution y′ and apply induction (since y′ has some integer
entries and Ay = Ay′).
Finally it remains to consider the casem ≤ n. Let a1, . . . , an be the rows of A and

let d(j) := ‖aj+1−aj‖1 for j = 1, . . . , n−1, i.e. d(j) gives the cumulated differences
between the jth and the (j + 1)th row. Since the columns are k-monotone, each

column contributes at most k to the sum
∑n−1

j=1 d(j). Thus

n−1∑

j=1

d(j) ≤ mk ≤ nk.

By the pigeonhole principle at least n/2 many rows j have d(j) ≤ 2k. Take any
second of these rows and we obtain a set J ⊆ {1, . . . , n− 1} of size |J | ≥ n/4 such
that for every j ∈ J one has d(j) ≤ 2k and (j + 1) /∈ J . Let A′y = b′ be the
subsystem of n′ ≤ 3

4n many equations, which we obtain by deleting the rows in J
from Ay = b. We apply induction to this system and obtain an x ∈ {0, 1}m with

‖A′x−A′y‖∞ ≤ 5k · log2(2n′)

≤ 5k log2

(

2 · 3
4
n
)

≤ 5k log2(2n)− 5k log2

(4

3

)

≤ 5k log2(2n)− 2k.

Now consider any j ∈ {1, . . . , n}. If j /∈ J , then row j still appeared in A′y = b′,
hence |aTj x − aTj y| ≤ 5k log2(2n) − 2k. Now suppose j ∈ J . We remember that

j + 1 /∈ J , thus |aTj+1(x − y)| ≤ 5k log2(2n) − 2k. But then using the triangle
inequality

|aTj x− aTj y| ≤ |(aj+1 − aj)
T (x − y)|

︸ ︷︷ ︸

≤d(j)≤2k

+ |aTj+1(x − y)|
︸ ︷︷ ︸

≤5k log2(2n)−2k

≤ 5k · log(2n).
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6. LOWER BOUNDS FOR ALGORITHMS BASED ON ROUNDING UP ITEMS

Let us remind ourselves, how the classical approximation algorithms for bin packing
work. For example in the algorithm of de la Vega and Lueker [11] one first groups
the items, i.e. the item sizes si are rounded up to some s′i ≥ si such that (1) the
number of different item sizes in s′ is at most O(1/ε2) (for some proper choice of ε)
and (2) the optimum number of bins increases only by a (1 + ε) factor. Note that
any solution for the new instance with bigger item sizes induces a solution with
the same value for the original instance. Then one computes a basic solution10

y ∈ QP′

≥0 to (LP) with |supp(y)| ≤ O(1/ε2) and uses (⌈yp⌉)p∈P′ as approximate
solution (here P ′ are the feasible patterns induced by sizes s′).
In contrast, the algorithm of Karmarkar and Karp [18] uses an iterative proce-

dure, where in each of the O(log n) iterations, the item sizes are suitably rounded
and the integral parts ⌊yp⌋ from a basic solution y are bought. Nevertheless, both
algorithms rely only on the following properties of bin-packing:

—Replacement property: If p is a feasible pattern (i.e.
∑

i∈p si ≤ 1) with j ∈ p and
si ≤ sj , then (p\{j}) ∪ {i} is also feasible.

—Discarding items: Any subset D ⊆ [n] of items can be greedily assigned to at
most 2s(D) + 1 many bins (s(D) :=

∑

i∈D si).

For a vector x ∈ ZP
≥0, we say that x buys

∑

p∈P:i∈p xp many slots for item i. The
replacement property implies that e.g. for two items s1 ≥ s2; x induces a feasible
solution already if it buys no slot for item 2, but 2 slots for the larger item 1.
In the following we always assume that s1 ≥ . . . ≥ sn. We say that an integral

vector x covers the non-discarded items [n] \D, if there is a map σ : [n]\D → [n]
with σ(i) ≤ i and

∑

p∈P:i∈p xp ≥ |σ−1(i)|. Here the map σ assigns items i to a
slot that x reserves for an item of size sσ(i) ≥ si. In other words, a tuple (x,D)
corresponds to a feasible solution if x covers the items in [n] \ D and the cost of
this solution can be bounded by 1

Tx+ 2s(D) + 1.
It is not difficult to see11 that for the existence of such a mapping σ it is necessary

(though i.g. not sufficient) that
∑

p∈P

xp · |p ∩ {1, . . . , i}| ≥ i− |D| ∀i ∈ [n]. (1)

The algorithm of Karmarkar and Karp starts from a fractional solution y and
obtains a pair (x,D) with 1

Tx ≤ 1
T y and

∑

i∈D si = O(log2 n) such that x covers
[n] \D. Moreover, it has the property12 that supp(x) ⊆ supp(y), which means that

10Alternatively one can compute an optimum solution for the rounded instance by dynamic pro-

gramming in time n(1/ε)O(1/ε)
, but using the LP reduces the running time to f(ε) · n.

11Proof sketch: Assign input items i iteratively in increasing order (starting with the largest one)
to the smallest available slot. If there is none left for item i, then there are less then i slots for
items 1, . . . , i.
12The Karmarkar-Karp method solves the (LP) O(logn) many times for smaller and smaller
instances. This can either be done by reoptimizing the previous fractional solution or by starting
from scratch. We assume here that the first option is chosen.
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it only uses patterns that are already contained in the support of the fractional
solution y. Hence this method falls into an abstract class of algorithms that can be
characterized as follows:

Definition 1. We call an approximation algorithm for bin packing based on
rounding up items, if for given item sizes s1, . . . , sn and a given fractional solution
y ∈ [0, 1]P to (LP) it performs as follows: The algorithm produces a tuple (x,D)
such that (1) x ∈ ZP

≥0, (2) supp(x) ⊆ supp(y) and (3) x covers [n] \D. We define
the additive integrality gap for a tuple (x,D) as

1
Tx+ 2

∑

i∈D

si − 1
T y.

We can now argue that the method of Karmarkar and Karp is optimal for all al-
gorithms that are based on rounding up items. The crucial ingredient is the recent
result of Newman and Nikolov [21] that there are 3 permutations of discrepancy
Ω(logn). For a permutation π we let π([i]) = {π(1), . . . , π(i)} be the prefix con-
sisting of the first i symbols. In the following, let O = {. . . ,−5,−3,−1, 1, 3, 5, . . .}
be the set of odd integers.

Theorem 9. [21] For every k ∈ N and n = 3k, there are permutations π1, π2, π3 :
[n] → [n] such that disc(π1, . . . , π3) ≥ k/3. Additionally, for every coloring χ :
[n] → O one has:

—If χ([n]) ≥ 1, then there are i, j such that χ(πj([i])) ≥ (k + 2)/3

—If χ([n]) ≤ −1, then there are i, j such that χ(πj([i])) ≤ −(k + 2)/3.

Note that the result of [21] was only stated for {±1} colorings. But the proof uses
only the fact that the colors χ(i) are odd integers13. This theorem does not just
yield a Ω(logn) discrepancy, but also the stronger claim that any coloring χ which
is balanced (i.e. |χ([n])| is small) yields a prefix of one of the permutations which
has a “surplus” of Ω(logn) and another prefix that has a “deficit” of Ω(logn).
We begin with slightly reformulating the result. Here we make no attempt to

optimize any constant. A string Σ = (Σ(1), . . . ,Σ(q)) is an ordered sequence; Σ(ℓ)
denotes the symbol at the ℓth position and Σ[ℓ] = (Σ(1), . . . ,Σ(ℓ)) denotes the

prefix string consisting of the first ℓ symbols. We write χ(Σ[ℓ]) =
∑ℓ

i=1 χ(Σ(i))
and O≥−1 = {−1, 1, 3, 5, . . .}.

Corollary 10. For infinitely many even n, there is a string Σ ∈ [n]3n, each
of the n symbols appearing exactly 3 times, such that: for all χ : [n] → O≥−1 with

χ([n]) ≤ logn
40 , there is an even ℓ ∈ {1, . . . , 3n} with χ(Σ[ℓ]) ≤ − logn

20 .

Note that this statement is in fact true for every large enough n using a similar
argument but we omit the proof as for us this weaker version suffices.

13The only point where [21] uses that χ(i) ∈ {±1} is the base case k = 1 of the induction in the
proof of Lemma 2. In fact, the case χ([3]) ≥ 1 with a single positive symbol i ∈ {1, 2, 3} becomes
possible if one considers colorings with odd numbers. However, also this case can easily be seen
to be true. Interestingly, coloring all multiples of 3 with +2 and all other numbers with −1 would
yield a constant discrepancy.
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Proof. For some k ∈ N, let π1, π2, π3 be the permutations on [3k] according to

Theorem 9. We append the permutations together to a string Σ of length 3 · 3k.
Additionally, for n := 3k + 1, we append 3 times the symbol n to Σ. Thus

Σ = (π1(1), . . . , π1(3
k), π2(1), . . . , π2(3

k), π3(1), . . . , π3(3
k), n, n, n)

and Σ has even length.
Next, let χ : [n] → O≥−1 be any coloring with |χ([n])| ≤ logn

40 . Reducing the

values of at most 1
2 (

logn
40 +1) colors by 2, we obtain a coloring χ′ : [n] → O≥−1 with

χ′([3k]) ≤ −1. Then by Theorem 9 there are j ∈ {1, . . . , 3} and i ∈ {1, . . . , 3k}
such that χ′(πj([i])) ≤ −(k + 2)/3. For ℓ := (j − 1) · 3k + i one has

χ(Σ[ℓ]) ≤ χ′(Σ[ℓ])+3(
logn

40
+2) ≤ (j−1)·χ′([3k])

︸ ︷︷ ︸

<0

+ χ′(πj [i])
︸ ︷︷ ︸

≤−(k+2)/3

+3(
logn

20
+2) ≤ − logn

20

for n large enough. If ℓ is not even, we can increment it by 1 — the discrepancy is
changed by at most 2 (since we may assume that the last symbol Σ(ℓ) is negative,
thus −1), which can be absorbed into the slack that we still have.

6.1 A Ω(logn) lower bound for the case of item sizes > 1/4

In the following, for an even n, let Σ be the string from Cor. 10. We define a matrix
A ∈ {0, 1}3n×n such that

Aij :=

{

1 Σ(i) = j

0 otherwise.

Note that A has a single one entry per row and 3 one entries per column.
Next, we add up pairs of consecutive rows to obtain a matrixB ∈ {0, 1, 2}(3/2)n×n.

Formally Bi := A2i−1 + A2i. We define a bin packing instance by choosing item
sizes si :=

1
3 − εi for items i = 1, . . . , 3

2n with ε := 1
20n . Then

1
3 > s1 > s2 > . . . >

s(3/2)n > 1
4 . Furthermore we consider B as our pattern matrix and y := (12 , . . . ,

1
2 )

a corresponding feasible fractional solution. Note that By = 1.
In the following theorem we will assume for the sake of contradiction that this

instance admits a solution (x,D) respecting Def. 1 with additive gap o(log n). It
is not difficult to see, that then |D| = o(logn) and |1Tx − 1

T y| = o(logn). The
integral vector x defines a coloring χ : [n] → O≥−1 via the equation xi = yi+

1
2χ(i).

This coloring is balanced, i.e. |χ([n])| = o(log n). Thus there is a prefix string Σ[ℓ]
with a deficit of χ(Σ[ℓ]) ≤ −Ω(logn). This corresponds to x having ℓ/2−Ω(log n)
slots for the largest ℓ/2 items, which implies that x cannot be feasible. Now the
proof in detail:

Theorem 11. There is no algorithm for bin packing, based on rounding up
items which achieves an additive integrality gap of o(logn) for all instances with
s1, . . . , sn > 1/4.

Proof. Let (x,D) be a solution to the constructed instance with supp(x) ⊆
supp(y) such that x is integral and covers the non-discarded items [ 32n] \ D. For
the sake of contradiction assume that

1
Tx+ 2

∑

i∈D

si ≤ 1
T y + o(log n).
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Clearly we may assume that 1Tx ≤ 1
T y + 1

600 logn, otherwise there is nothing to

show. Note that 1Tx+2s(D) ≥ (3/2)n−|D|
3 +2 · |D|

4 = 1
T y+ |D|

6 (since 1
3 > si >

1
4 )

and thus |D| ≤ 1
100 logn. Furthermore 1

Tx ≥ (3/2)n−|D|
3 ≥ 1

T y − 1
300 logn. We

can summarize:

|1Tx− 1
T y| ≤ logn

300
and

i∑

i′=1

Bi′x ≥ i− logn

100
∀i ∈ [

3

2
n] (2)

We will now lead this to a contradiction. Recall that every symbol i ∈ {1, . . . , n}
corresponds to a column of matrix B. Define a coloring χ : [n] → O≥−1 such that
xi =

1
2 + 1

2χ(i). Note that indeed the integrality of xi implies that χ(i) is an odd
integer. Furthermore |χ([n])| = 2 · |1Tx − 1

T y| ≤ 1
150 logn. Using Cor. 10 there is

a 2q ∈ {1, . . . , 3n} such that χ(Σ[2q]) ≤ − logn
20 . The crucial observation is that by

construction χ(Σ[2q]) =
∑q

i=1 Biχ. Then the number of slots that x reserves for
the largest q items is

q
∑

i=1

Bix =

q
∑

i=1

Biy

︸ ︷︷ ︸

=q

+
1

2

q
∑

i=1

Biχ = q +
1

2
χ(Σ[2q])
︸ ︷︷ ︸

≤− log n
20

≤ q − logn

40
.

Thus x cannot cover items [ 32n] \D.

6.2 A Ω(log2 n) lower bound for the general case

Starting from the pattern matrix B defined above, we will construct another pattern
matrix C and a vector b of item multiplicities such that for the emerging instance
even a o(log2 n) additive integrality gap is not achievable by just rounding up items.
Let ℓ := logn be a parameter. We will define groups of items for every j =

1, . . . , ℓ, where group j ∈ {1, . . . , ℓ} contains 3
2n many different item types; each

one with multiplicity 2j−1. Define

C :=










20 ·B 0 0 . . . 0

0 21 · B 0 . . . 0

0 0 22 ·B . . . 0

...
...

...
. . .

...
0 0 0 . . . 2ℓ−1 · B










and b =










20 · 1
21 · 1
22 · 1
...

2ℓ−1 · 1










,

thus C is an 3
2nℓ × nℓ matrix and b is a 3

2nℓ-dimensional vector. In other words,
each group is a scaled clone of the instance in the previous section. Choosing
again y := (1/2, . . . , 1/2) ∈ Rℓn as fractional solution, we have Cy = b. Note that
allowing multiplicities is just for notational convenience and does not make the
problem setting more general. Since the total number of items is still bounded by
a polynomial in n (more precisely 1

T b ≤ O(n2)), each item i could still be replaced
by bi items of multiplicity 1. Let sji := 1

3 · (12 )j−1 − i · ε the size of the ith item
in group j for ε := 1

12n3 . Note that the size contribution of each item type is

2j−1 · sji ∈ [ 13 ,
1
3 − 1

n ]. Abbreviate the number of different item types by m := ℓ · 32n.
Theorem 12. There is no algorithm for bin packing which is based on rounding

up items and achieves an additive integrality gap of o(log2 n).
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Proof. Let (x,D) be arbitrary with supp(x) ⊆ supp(y) such that x is integral

and covers [m] \ D (considering D now as a multiset). Assume for the sake of
contradiction that

1
Tx+ 2

∑

i∈D

si ≥ 1
T y + o(log2 n).

As in Theorem 11, we can assume that |1Tx − 1
T y| ≤ 1

10000 log
2 n. First, observe

that the bins in y are packed pretty tight, i.e. |1T y − s([m])| ≤ 1. If an item
i is covered by a slot for a larger item i′, then this causes a waste of si′ − si,
which is not anymore available for any other item. The additive gap is defined as
1
Tx+ 2s(D)− 1

T y ≥ s([m]/D) + waste + 2s(D)− s([m])− 1 = waste + s(D)− 1.
Thus both, the waste and the size of the discarded items s(D) must be bounded
by 1

10000 log
2 n.

Observe that the items in group j − 1 are at least a factor 3/2 larger than the
items in group j. In other words, every item i from group j which is mapped to
group 1, . . . , j − 1 generates a waste of at least 1

2s
j
i . Thus the total size of items

which are mapped to the slot of an item in a larger group is bounded by 1
5000 log

2 n.
Thus there lies no harm in discarding these items as well — let D′ be the union of
such items and D. Then s(D′) ≤ s(D) + 1

5000 log
2 n ≤ 1

3000 log
2 n.

For group j, let D′
j ⊆ D′ be the discarded items in the jth group and let xj (yj ,

resp.) be the vector x (y, resp.), restricted to the patterns corresponding to group
j. In other words, x = (x1, . . . , xℓ) and y = (y1, . . . , yℓ). By xj

i ∈ Z≥0 we denote
the entry belonging to column (0, . . . ,0, 2j−1Bi,0, . . . ,0) in C. Pick j ∈ {1, . . . , ℓ}
uniformly at random, then E[|1Txj−1

T yj |] ≤ 1
10000 logn and E[s(D′

j)] ≤ 1
3000 logn.

By Markov’s inequality, there must be an index j, such that |1Txj − 1
T yj | ≤

1
1000 logn and s(D′

j) ≤ logn
2000 . Recall that |D′

j| ≤ 4 · 2j−1s(D′
j) ≤ 2j−1 logn

500 . Since xj

covers all items in group j (without D′
j), we obtain

i∑

i′=1

2j−1Bi′x
j ≥ i · 2j−1 − 2j−1 logn

500
∀i = 1, . . . ,

3

2
n

After division by 2j−1, this implies Condition (2), which leads to a contradiction.
The claim follows since the number of items counted with multiplicity is bounded

by O(n2), thus log2(1T b) = Θ(log2 n).

Remark 1. Note that the additive integrality gap for the constructed instance is
still small, once arbitrary patterns may be used. For example a First Fit Decreasing
assignment will produce a solution of cost exactly OPTf . This can be partly fixed by
slightly increasing the item sizes. For the sake of simplicity consider the construc-
tion in Section 6.1 and observe that the used patterns are still feasible if the items
corresponding to the first permutation have sizes in the range [ 13 + 10δ, 13 + 11δ]
and the items corresponding to the 2nd and 3rd permutation have item sizes in
[ 13 − 7δ, 13 − 6δ] (for a small constant δ > 0). Then a First Fit Decreasing approach
will produce a Ω(n) additive gap.
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