Let \(f = f(z_1, \ldots, z_n) \) be a holomorphic function defined on an open subset \(P \in U \subset \mathbb{C}^n \). The log canonical threshold of \(f \) at \(P \) is the largest \(s \in \mathbb{R} \) such that \(|f|^s\) is locally integrable at \(P \). This invariant gives a sophisticated measure of the singularities of the set defined by the zero locus of \(f \) which is of importance in a variety of contexts (such as the minimal model program and the existence of Kähler-Einstein metrics in the negatively curved case). In this talk we will discuss recent results on the remarkable structure enjoyed by these invariants.