Poset topology meets combinatorial representation theory

Patricia Hersh, North Carolina State University
Friday, February 10, 2017 - 2:30pm
SMI 102

Patricia Hersh from North Carolina State University

Back in the 1960's, Gian-Carlo Rota recognized he importance of an interpretation for the coefficients in inclusion-exclusion counting formulas as reduced Euler characteristics of associated simplicial complexes. We will begin by discussing some of the history of this powerful link between combinatorics and topology. Then we will turn to the example of weak Bruhat order. This partial order on permutations captures much of the structure of how permutations may be written as products of adjacent transpositions. The relations satisfied by the adjacent transpositions, the braid relations, may be shown to control a poset invariant called the Moebius function -- the aforementioned reduced Euler characteristic in disguise. A topological result of Quillen, the Quillen Fiber Lemma, enables key properties of weak Bruhat order to be transferred to posets of current interest in the representation theory of Kac-Moody algebras, the so-called crystal graphs of highest weight representations. However, computer computations of the Moebius function for crystal graphs led us also to discover unexpected new relations amongst the crystal raising and lowering operators. This work on crystal graphs is joint work with Cristian Lenart.

Related Links:
Pacific Institute for the Mathematical Sciences
Event Type:
Colloquia
Event Subcalendar:
UW-PIMS Colloquium

Department of Mathematics
University of Washington

Administrative Office
C-138 Padelford
Box 354350
Seattle, WA 98195-4350
Phone: (206) 543-1150
Fax: (206) 543-0397

For all academic inquiries, please contact:
Math Student Services
C-36 Padelford
Phone: (206) 543-6830
Fax: (206) 616-6974
advising@math.washington.edu

Privacy
Terms
Site Map
Alumni Update
Contact Us

Source URL: https://math.washington.edu/events/2017-02-10/poset-topology-meets-combinatorial-representation-theory