[Video] On the Approximation of Laplacian Eigenvalues in Graph Disaggregation

John Urschel, Massachusetts Institute of Technology

Tuesday, March 28, 2017 - 3:30pm

SAV 260

Graph disaggregation is a technique used to address the high cost of computation for power law graphs on parallel processors. The few high-degree vertices are broken into multiple small-degree vertices, in order to allow for more efficient computation in parallel. In particular, we consider computations involving the graph Laplacian, which has significant applications, including diffusion mapping and graph partitioning, among others. We prove results regarding the spectral approximation of the Laplacian of the original graph by the Laplacian of the disaggregated graph. In addition, we construct an alternate disaggregation operator whose eigenvalues interlace those of the original Laplacian. Using this alternate operator, we construct a uniform preconditioner for the original graph Laplacian.

Related Links:
John Urschel
Pacific Institute for the Mathematical Sciences
Related Fields:

- Finance
- Mathematical Physics

Department of Mathematics
University of Washington

Administrative Office
C-138 Padelford
Box 354350
Seattle, WA 98195-4350
Phone: (206) 543-1150
Fax: (206) 543-0397

For all academic inquiries, please contact:

Math Student Services
C-36 Padelford
Phone: (206) 543-6830
Fax: (206) 616-6974
advising@math.washington.edu

Source URL: https://math.washington.edu/events/2017-03-28/tba-0