The topological Tverberg problem beyond prime powers

Florian Frick, Carnegie Mellon University

Wednesday, October 7, 2020 - 3:30pm to 5:00pm

Note: This talk begins with a pre-seminar (aimed at graduate students) at 3:30–4:00. The main talk starts at 4:10.

Given d and q the topological Tverberg problem asks for the minimal n such that any continuous map from the n-dimensional simplex to \mathbb{R}^d identifies q points from pairwise disjoint faces. For q a prime power n is $(q - 1)(d + 1)$. The lower bound follows from a general position argument, the upper bound from equivariant topological methods. It was shown recently that for q with at least two distinct prime divisors the lower bound may be improved. For those q non-trivial upper bounds had been elusive. I will show that n is at most $q(d + 1) - 1$ for all q. I had previously conjectured this to be optimal unless q is a prime power. This is joint work with Pablo Soberón.