Given d

and

q the topological Tverberg problem asks for the minimal n

such that any continuous map from the n

-dimensional simplex to \mathbb{R}^d

identifies

q points from pairwise disjoint faces. For

q a prime power n

is $(q - 1)(d + 1)$

. The lower bound follows from a general position argument, the upper bound from equivariant topological methods. It was shown recently that for q

with at least two distinct prime divisors the lower bound may be improved. For those

q non-trivial upper bounds had been elusive. I will show that n

is at most $q(d + 1) - 1$

for all q

. I had previously conjectured this to be optimal unless

q is a prime power. This is joint work with Pablo Soberón.
Related Links:
Florian Frick and Pablo Soberón. "The topological Tverberg problem beyond prime powers."
Imre Bárány, Pavle V. M. Blagojevic, and Günter M. Ziegler. "Tverberg's theorem at 50: extensions and
counterexamples."

Event Type: Seminars
Event Subcalendar: Combinatorics and Geometry Seminar
Related Fields: Algebraic Topology Combinatorics Discrete Geometry

Department of Mathematics
University of Washington

Administrative Office
C-138 Padelford
Box 354350
Seattle, WA 98195-4350
Phone: (206) 543-1150
Fax: (206) 543-0397

For all academic inquiries, please contact:
Math Student Services
C-36 Padelford
Phone: (206) 543-6830
Fax: (206) 616-6974
advising@math.washington.edu

Source URL: https://math.washington.edu/events/2020-10-07/topological-tverberg-problem-beyond-prime-powers