Math 134 Background Quiz

The purpose of this quiz is to help you see if you are ready for Math 134. It has pre-calculus and calculus material and some logic questions. Do not use a graphing calculator or an app for computations. Closed notes.

1. Find the sum of solutions to the equation

$$
\sqrt{x+1}+\frac{1}{\sqrt{x+1}}=\frac{13}{6}
$$

2. Jerry runs at a steady rate and Tom runs m times as fast where $m>1$. If Tom gives Jerry a head start of h meters, how many meters must Tom run to overtake Jerry?
3. Evaluate the following derivatives.
(a) $\frac{d}{d x}\left(5 x^{2}+4 x\right)^{7}$
(b) $\frac{d}{d x} x e^{x^{2}}$
(c) $\frac{d}{d x}\left(\ln \left(x^{2}+1\right)-\tan (5 x)\right)$
4. Let $h(x)=f(g(x))$. Use the picture below to compute $h^{\prime}(1)$.

5. Find the equation of the tangent line to the function $f(x)=2 x^{3}-4 x+7$ at the point where $x=-1$.
6. Evaluate the following integrals.
(a) $\int 3 x^{3}-4 x^{2}+6 x-11 d x$.
(b) $\int_{0}^{\pi / 4} \cos (3 x) d x$.
(c) $\int x \sin \left(x^{2}\right) d x$.
7. Find the shaded area below. The line has equation $y=2 x$ and the curve has equation $y=x^{3}-x^{2}$.

8. State the Fundamental Theorem of Calculus. There are two versions of the theorem. If you know both, state both of them. Otherwise, state whichever one you know.
9. Here is a "proof" of $2=3$. Find the line whose deduction from the previous is flawed.
10. Assume $x=2$.
11. Then, $2 x=x+2$.
12. So $-x^{2}+2 x=-x^{2}+x+2$.
13. Then we factor to get $-x(x-2)=-(x+1)(x-2)$.
14. Simplifying we have $x=x+1$.
15. Since $x=2, x=x+1=3$.
16. Is the following limit computation correct? If not, which step has the error?
17. $\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}$
18. $=\lim _{x \rightarrow-\infty} \frac{\frac{x}{x}}{\frac{\sqrt{x^{2}+1}}{x}}$.
19. $=\lim _{x \rightarrow-\infty} \frac{1}{\frac{\sqrt{x^{2}+1}}{x}}$.
20. $=\lim _{x \rightarrow-\infty} \frac{1}{\frac{\sqrt{x^{2}+1}}{\sqrt{x^{2}}}}$.
$5 .=\lim _{x \rightarrow-\infty} \frac{1}{\sqrt{\frac{x^{2}+1}{x^{2}}}}$.
21. $=\lim _{x \rightarrow-\infty} \frac{1}{\sqrt{1+\frac{1}{x^{2}}}}$
22. $=\frac{1}{\sqrt{1+0}}=1$
23. Which of the following statements are correct?
(a) For any two real numbers a and b we have $\frac{a^{2}+b^{2}}{2} \geq a b$.
(b) For any two real numbers a and b we have $|a+b| \leq|a|+|b|$.
(c) For any two non-negative numbers a and b we have $\sqrt{a b} \leq \frac{a+b}{2}$.
(d) For any postive real number a we have $a+\frac{1}{a} \geq 2$.
