INSTRUCTIONS: Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it. Please start each solution on a new page and submit your solutions in order.

1. Show that the additive group \mathbb{Q}^+ of the rational numbers under addition has no maximal proper subgroup. Is the same true for the multiplicative group \mathbb{Q}^* of nonzero rational numbers?

2. Let p, q be distinct primes

(a) Show that there is at most one nonabelian group of order pq up to isomorphism.

(b) Classify all pairs (p, q) such that there exists a nonabelian group of order pq.

3. Let \mathbb{Z}_p denote the cyclic group of prime order p.

(a) Show that \mathbb{Z}_p has two irreducible representations over \mathbb{Q} up to equivalence, one of dimension 1 and the other of dimension $p - 1$.

(b) Let G be a finite group and $\rho : G \rightarrow GL_n(\mathbb{Q})$ be an irreducible representation of G over \mathbb{Q}. Let ρ_C denote ρ followed by the inclusion of $GL_n(\mathbb{Q})$ into $GL_n(\mathbb{C})$. We say that ρ is absolutely irreducible if ρ_C remains irreducible over \mathbb{C}. Suppose that G is abelian and every irreducible representation of G over \mathbb{Q} is absolutely irreducible. Show that G is the direct product of k cyclic subgroups of order 2 for some k.

4. Compute the splitting field and the Galois group of the polynomial $f(x) = x^5 - 3$ over the following fields: $\mathbb{Q}[e^{2\pi i/5}]$, \mathbb{R}, and \mathbb{C}.

5. Work out the degrees of the intermediate fields between \mathbb{Q} and $\mathbb{Q}[\zeta_{12}]$, where ζ_{12} is a primitive 12th root of 1.

6. Let $R = \mathbb{Z}[x]/(x^2 + x + 1)$.

(a) Show that R is Noetherian but not Artinian as a ring.

(b) Show that R is an integrally closed domain.
7. Let R be a (commutative) principal ideal domain, M, N finitely generated free R-modules, and $\phi : M \rightarrow N$ an R-module homomorphism.

(a) Show that the kernel K of ϕ is a direct summand of M.

(b) Show by an example that the image of ϕ need not be a direct summand of N.

8. Let $R = K[x, y]$, where K is a field, and let $m = (x, y) \subset R$.

(a) Find a projective resolution of the R-module R/m.

(b) Compute $\text{Tor}^R_i(m, R/m)$ for all $i \geq 0$ and conclude that m is not a flat R-module.