Complex Prelim

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Please start each solution on a new page and submit your solutions in order.

1. Assume $b>1$ is a real number. Using contour integrals compute

$$
\int_{0}^{\infty} \frac{d x}{1+x^{b}}
$$

Express your answer as a positive real number. Justify all estimates.
2. Suppose f is a non-constant entire function and $f(1-z)=1-f(z)$ for all z. Prove that $f(z)$ assumes every complex number.
3. Let f and g be analytic on a connected relatively compact open set W in \mathbb{C} and continuous on the closure \bar{W}. Prove that the maximum of $|f(z)|+|g(z)|$ occurs on the boundary ∂W.
4. (a) Find a bounded harmonic function u that is continuous on $S=\{z:|z| \leq 1, \operatorname{Im}(z) \geq 0, z \neq 1, z \neq-1\}$ such that $u=3$ on the interval $(-1,1)$ of the real axis and $u=1$ on $\{z:|z|=1, \operatorname{Im}(z)>0\}$.
(b) There are infinitely many unbounded harmonic functions v with the properties stated in part (a). Find two of them.
5. Is there an analytic function f that maps $\{|z|<1\}$ into $\{|w|<1\}$ such that $f\left(\frac{1}{2}\right)=\frac{2}{3}, f\left(\frac{1}{4}\right)=\frac{1}{3}$?
6. Prove that there is no $1-1$ holomorphic map from $D^{*}=\{z: 0<|z|<1\}$ onto $A=\{z: a<|z|<b\}$ where $0<a<b$.
7. Suppose f and g are non-zero entire functions. Suppose also that $|f(z)| \leq|g(z)|$ when $|z| \geq 2017$. Prove that f / g is a rational function.
8. Let $\Omega=\{z:|z|<1\} \cup\{z:|z-1|<1\}$. Prove that there is a function f that is analytic on Ω but does not extend to any open set that contains Ω as a proper subset.

