Complex Prelim

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Please start each solution on a new page and submit your solutions in order.

1. Assume \(b > 1 \) is a real number. Using contour integrals compute

\[
\int_0^\infty \frac{dx}{1 + x^b}
\]

Express your answer as a positive real number. Justify all estimates.

2. Suppose \(f \) is a non-constant entire function and \(f(1-z) = 1 - f(z) \) for all \(z \). Prove that \(f(z) \) assumes every complex number.

3. Let \(f \) and \(g \) be analytic on a connected relatively compact open set \(W \) in \(\mathbb{C} \) and continuous on the closure \(\overline{W} \). Prove that the maximum of \(|f(z)| + |g(z)| \) occurs on the boundary \(\partial W \).

4. (a) Find a bounded harmonic function \(u \) that is continuous on

\[
S = \{ z : |z| \leq 1, Im(z) \geq 0, z \neq 1, z \neq -1 \}
\]

such that \(u = 3 \) on the interval \((-1, 1) \) of the real axis and \(u = 1 \) on \(\{ z : |z| = 1, Im(z) > 0 \} \).

(b) There are infinitely many unbounded harmonic functions \(v \) with the properties stated in part (a). Find two of them.

5. Is there an analytic function \(f \) that maps \(\{|z| < 1\} \) into \(\{|w| < 1\} \) such that \(f(\frac{1}{2}) = \frac{2}{3}, f(\frac{1}{4}) = \frac{1}{3} \)?

6. Prove that there is no \(1-1 \) holomorphic map from \(D^* = \{ z : 0 < |z| < 1 \} \) onto \(A = \{ z : a < |z| < b \} \) where \(0 < a < b \).

7. Suppose \(f \) and \(g \) are non-zero entire functions. Suppose also that \(|f(z)| \leq |g(z)| \) when \(|z| \geq 2017 \). Prove that \(f/g \) is a rational function.

8. Let \(\Omega = \{ z : |z| < 1 \} \cup \{ z : |z - 1| < 1 \} \). Prove that there is a function \(f \) that is analytic on \(\Omega \) but does not extend to any open set that contains \(\Omega \) as a proper subset.