
Complex Analysis Prelim, Fall 2019

Instructions: Do as many of the eight problems as you can. Four completely correct solutions will
be a clear pass; a few complete solutions will count more than many partial solutions. Always carefully
justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible,
indicate what would be required to fill it in. Some problems have more than one part; the parts may not
be weighted equally. You may use any standard theorem from your complex analysis text, identifying it
either by name or by stating it in full. Be sure to establish that the hypotheses of the theorem are satisfied
before you use it. C denotes the complex numbers, D the open unit disc {z : |z| < 1} and H the upper half
plane {z : =z > 0}.
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2. Suppose that f is entire and |f(z2)| ≤ |f(z)| for all z ∈ C. Prove that f is constant.

3. Show that the infinite product
∞∏
n=1

(1 +
1

n
)z(1− z

n
)

converges absolutely and locally uniformly to an analytic function on C.

4. Determine all functions f : C \ {0} → C \ {0} that are analytic and injective.
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5. Maximize the partial derivative ux(0) among all harmonic functions u : D→ [0, 1].

6. If f is analytic in D and if there are constants C > 0 and 0 < α < 1 such that

|f(z)− f(w)| ≤ C|z − w|α

for all z, w ∈ D, show that
|f ′(z)| ≤ C(1− |z|)α−1

for all z ∈ D.

7. Consider a sequence of analytic functions fn : H → H. Show that either |fn| → ∞ uniformly on
compact subsets, or there is a subsequence fnk

that converges to an analytic function uniformly on
compact subsets.

8. Show that there is no analytic function f in the unit disc D such that |f(zn)| → ∞ for all sequences
zn ∈ D such that |zn| → 1.
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