Topology and Geometry of Manifolds Preliminary Exam March 2020

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

The word "smooth" means C^{∞} , and all manifolds are assumed to be without boundary unless otherwise specified. Subsets of \mathbb{R}^n are assumed to have the Euclidean topology and standard smooth structure.

Please start each solution on a new page and submit your solutions in order.

- 1. Let $T^n = \mathbb{S}^1 \times ... \times \mathbb{S}^1$ denote the *n*-torus, and let *M* be a connected topological manifold with finite fundamental group. Show that any continuous map from *M* to T^n is homotopic to a constant map.
- 2. Let $n \ge 2$. Identify with proof the fundamental group of the following submanifold of $\mathbb{R}^n \times \mathbb{R}^n$:

$$M_n = \{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x \neq y \}.$$

3. Show that

 $M = \{ (Y, Z) \in \mathbb{R}^3 \times \mathbb{R}^3 : Y \times Z = (0, 0, 1) \}$

is a smoothly embedded submanifold of $\mathbb{R}^6 = \mathbb{R}^3 \times \mathbb{R}^3$ that is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}^2$, where \mathbb{S}^1 is the unit circle. (In $Y \times Z$, the symbol \times indicates the ordinary cross product of vector calculus.)

4. Let $M = \mathbb{R}^n \setminus \{0\}$ and let ||x|| be the Euclidean norm of $(x^1, x^2, ..., x^n) \in M$. Consider the vector field

$$X = \frac{1}{||x||^n} \sum_{j=1}^n x^j \frac{\partial}{\partial x^j}$$

on M.

- (a) Find the flow of X. Is X complete?
- (b) Show that the (n-1)-form $\omega = i_X(dx^1 \wedge dx^2 \wedge ... \wedge dx^n)$ is closed and use this fact to compute $\mathcal{L}_X(dx^1 \wedge dx^2 \wedge ... \wedge dx^n)$.
- 5. Let $f : \mathbb{S}^3 \to \mathbb{S}^2$ be a submersion, where \mathbb{S}^n denotes the *n*-sphere. Prove that f is surjective but has no section.

(Recall that if $f: M \to N$ is a surjective submersion, a *section* of f is a smooth map $g: N \to M$ such that $f \circ g = Id_N$.)

- 6. For a smooth manifold M and a nonnegative integer p, let $\Omega_c^p(M)$ denote the vector space of compactly supported smooth p-forms. The pth compactly supported de Rham cohomology group $H_c^p(M)$ is the kernel of $d: \Omega_c^p(M) \to \Omega_c^{p+1}(M)$ modulo the image of $d: \Omega_c^{p-1}(M) \to \Omega_c^p(M)$. Prove that for each $n \ge 1$, $H_c^n(\mathbb{R}^n)$ is not the trivial vector space.
- 7. (a) If ω is a nonvanishing smooth 1-form on a smooth manifold, show that the distribution annihilated by ω is integrable if and only if $\omega \wedge d\omega = 0$.
 - (b) If X is a nonvanishing smooth vector field on \mathbb{R}^3 , prove that the following conditions are equivalent.
 - i. Every point in \mathbb{R}^3 has a neighborhood U on which there exist smooth functions $f, g: U \to \mathbb{R}$ such that the restriction of X to U is equal to f grad g.
 - ii. $\operatorname{curl} X$ is everywhere orthogonal to X.
- 8. Let M denote the set of unoriented triangles in \mathbb{R}^3 with one vertex at the origin. Find a transitive action of a Lie group G on M and use it to identify M with a homogeneous space G/H. Show that this implies that M is naturally a connected smooth manifold, and compute its dimension.