Topology and Geometry of Manifolds Preliminary Exam September 17, 2020

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in. The word "smooth" means C^{∞} . Unless otherwise specified, manifolds and associated structures (e.g., maps, vector fields, differential forms) are assumed to be smooth, and manifolds are assumed to be without boundary. Subsets of \mathbb{R}^n are assumed to have the Euclidean topology, and \mathbb{R}^n is assumed to have its standard smooth structure.

(1) Write $\mathbf{x} = (x_1, x_2)$. Consider the function $f : \mathbb{R}^3 \to \mathbb{R}^3$ given by

$$f(x_1, x_2, y) = (x_1 |\mathbf{x}|^{-\frac{2}{3}} (y^2 + 1), x_2 |\mathbf{x}|^{-\frac{2}{3}} (y^2 + 1), y |\mathbf{x}|^{\frac{4}{3}})$$

when $\mathbf{x} \neq \mathbf{0}$ and f(0, 0, y) = (0, 0, 0). Prove that the graph of f is a smooth embedded submanifold of \mathbb{R}^6 of dimension 3. (Hint: Think about why the graph of $x \mapsto x^{\frac{1}{3}}$ is a smooth submanifold of \mathbb{R}^2 .)

- (2) Let X be a connected and locally path-connected space and $p: E \to X$ a two-fold covering map (with E connected).
 - (a) Prove that $\operatorname{Aut}_p(E)$, the group of deck transformations of p, is isomorphic to Z/(2).
 - (b) Let ϕ be the nontrivial element of $\operatorname{Aut}_p(E)$. Define

$$E \times {}_{Z/(2)} \mathbb{R} = E \times \mathbb{R} / \sim,$$

where $(y, -t) \sim (\phi(y), t)$ for all $y \in E$ and $t \in \mathbb{R}$, and let $\pi : E \times_{\mathbb{Z}/(2)} \mathbb{R} \to X$ be given by $\pi(y, t) = p(y)$. Prove that π is naturally a *non-trivial* rank 1 vector bundle over X.

(3) Recall that the torus may be expressed as a smooth embedded submanifold of R³ consisting of the points

$$T = \left\{ X = (x, y, z) \in \mathbb{R}^3 \mid \left(\sqrt{x^2 + y^2} - 2 \right)^2 + z^2 = 1 \right\}.$$

Let M be the quotient space obtained by identifying $X \in T$ with its "antipode" -X.

- (a) Identify from the classification of compact connected surfaces the surface to which M is homeomorphic.
- (b) Give a finite open cover of M by sets homeomorphic to open subsets of \mathbb{R}^2 . (You do not need to write down homeomorphisms between your open sets and their homeomorphic images in \mathbb{R}^2 .) Explain how this open cover may be used, together with a partition of unity argument, to (topologically) embed M in some Euclidean space.

(c) Define a map $F: T \to \mathbb{R}^4$ by

$$F(x, y, z) = (x^2 - y^2, xy, xz, yz)$$

Prove that F descends to a smooth embedding of M in \mathbb{R}^4 . (You may use without proof the fact that M has a unique smooth structure for which the quotient map $T \to M$ is a submersion.)

- (4) Prove that if M is any *n*-manifold, then the total space TM of the tangent bundle, regarded as a 2n-manifold, is orientable.
- (5) Let X, Y, Z be the vector fields

$$X = z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z}$$
$$Y = -z\frac{\partial}{\partial x} + x\frac{\partial}{\partial z}$$
$$Z = y\frac{\partial}{\partial x} - x\frac{\partial}{\partial y}$$

on \mathbb{R}^3 , and, for $(a, b, c) \in \mathbb{R}^3 \setminus \{0\}$, consider the vector field W = aX + bY + cZ. Let $\Theta : \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$ be the flow of W, and let $\Theta_t : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by $\Theta_t(p) = \Theta(t, p)$.

Prove that Θ_t is a rotation about the vector $(a, b, c) \in \mathbb{R}^3$; i.e., $\Theta_t \in SO(3)$ and $\Theta_t(a, b, c) = (a, b, c)$. In computing Θ_t , you will see that W is complete.

- (6) Let $\omega = f \, dx + g \, dy$ be a closed one-form on $\mathbb{R}^2 \setminus \{0\}$.
 - (a) If f and g are bounded, prove that ω is exact.

(b) Show by examples that ω may or may not be exact if f and g are not bounded.

- (7) Consider the Lie group $G = \mathbb{R}^n \times \operatorname{GL}(n, \mathbb{R})$ with product given by $(v, A) \cdot (w, B) = (v + Aw, AB)$. (This group is isomorphic to the group of affine linear transformations of \mathbb{R}^n .) Compute the Lie algebra of G. Your answer should consist of a description of $T_e G$ together with a description of the Lie bracket on this vector space. You may state without proof the Lie algebra of $\operatorname{GL}(n, \mathbb{R})$.
- (8) Let G be a Lie group of dimension n and ω a k-form on G. ω is said to be *left* invariant if $(L_g^*)\omega = \omega$ for all $g \in G$ and right invariant if $(R_g^*)\omega = \omega$ for all $g \in G$. Here $L_g : G \to G$ and $R_g : G \to G$ denote, respectively, left and right multiplication by g. Prove that, if G is compact and connected and k = n, then ω is right invariant whenever it is left invariant. (Hint: For $g \in G$, consider the conjugation map $C_g : G \to G$ given by $C_g(h) = ghg^{-1}$. Prove that $C_g^* : \Omega_e^n(G) \to \Omega_e^n(G)$ is the identity, where e is the identity in G and $\Omega_e^n(G)$ is the fiber over e of the vector bundle of n-forms on G.)