Algebra Preliminary Exam

Instructions: Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. (a) Classify groups of order $2009=7^{2} \times 41$.
(b) Suppose that F is a field and K / F is a Galois extension of degree 2009. How many intermediate fields are there - that is, how many fields L are there with $F \subset L \subset K$, both inclusions proper? (There may be several cases to consider.)
2. Let K be a field. A discrete valuation on K is a function $\nu: K \backslash\{0\} \rightarrow \mathbb{Z}$ such that
(i) $\nu(a b)=\nu(a)+\nu(b)$
(ii) ν is surjective
(iii) $\nu(a+b) \geq \min \{\nu(a), \nu(b)\} \forall a, b \in K \backslash\{0\}$ with $a+b \neq 0$

Let $R:=\{x \in K \backslash\{0\}: \nu(x) \geq 0\} \cup\{0\}$. Then R is called the valuation ring of ν.

Prove the following:
(a) R is a subring of K containing the 1 in K.
(b) for all $x \in K \backslash\{0\}$, either x or x^{-1} is in R.
(c) x is a unit of R if and only if $\nu(x)=0$.
(d) Let p be a prime number, $K=\mathbb{Q}$ and $\nu_{p}: \mathbb{Q} \backslash\{0\} \rightarrow \mathbb{Z}$ be the function defined by $\nu_{p}\left(\frac{a}{b}\right)=n$ where $\frac{a}{b}=p^{n} \frac{c}{d}$ and p does not divide c and d. Prove that the corresponding valuation ring R is the ring of all rational numbers whose denominators are relatively prime to p.
3. Let F be a field of characteristic not equal to 2 .
(a) Prove that any extension K of F of degree 2 is of the form $F(\sqrt{D})$ where $D \in F$ is not a square in F and conversely, that each such extension has degree 2 over F.
(b) Let $D_{1}, D_{2} \in F$ neither of which is a square in F. Prove that $\left[F\left(\sqrt{D_{1}}, \sqrt{D_{2}}\right)\right.$: $F]=4$ if $D_{1} D_{2}$ is not a square in F and is of degree 2 otherwise.
4. Let F be a field and $p(x) \in F[x]$ an irreducible polynomial.
(a) Prove that there exists a field extension K of F in which $p(x)$ has a root.
(b) Determine the dimension of K as a vector space over F and exhibit a vector space basis for K.
(c) If $\theta \in K$ denotes a root of $p(x)$, express θ^{-1} in terms of the basis found in part (b).
(d) Suppose $p(x)=x^{3}+9 x+6$. Show $p(x)$ is irreducible over \mathbb{Q}. If θ is a root of $p(x)$, compute the inverse of $(1+\theta)$ in $\mathbb{Q}(\theta)$.
5. Let R be a ring and Q an R-module. According to Baer's criterion, Q is injective if and only if for every ideal I of R, any R-module map $f: I \rightarrow Q$ may be extended to an R-module map $g: R \rightarrow Q$:

(a) Suppose that p is prime and n is a positive integer with p dividing n. Then multiplication makes $\mathbb{Z} / p \mathbb{Z}$ into a module over the ring $\mathbb{Z} / n \mathbb{Z}$. Show that $\mathbb{Z} / p \mathbb{Z}$ is injective as a $\mathbb{Z} / n \mathbb{Z}$-module if and only if p^{2} does not divide n.
(b) Prove that if R is a PID, then an R-module Q is injective if and only if $r Q=Q$ for every nonzero $r \in R$.
6. Fix a ring R, an R-module M, and an R-module homomorphism $f: M \rightarrow M$.
(a) If M satisfies the descending chain condition on submodules, show that if f is injective, then f is surjective. (Hint: note that if f is injective, so are $f \circ f, f \circ f \circ f$, etc.)
(b) Give an example of a ring R, an R-module M, and an injective R-module homomorphism $f: M \rightarrow M$ which is not surjective.
(c) If M satisfies the ascending chain condition on submodules, show that if f is surjective, then f is injective.
(d) Give an example of a ring R, an R-module M, and a surjective R-module homomorphism $f: M \rightarrow M$ which is not injective.
7. Let G be a finite group, k an algebraically closed field, and V an irreducible k-linear representation of G.
(a) Show that $\operatorname{Hom}_{k G}(V, V)$ is a division algebra with k in its center.
(b) Show that V is finite-dimensional over k, and conclude that $\operatorname{Hom}_{k G}(V, V)$ is also finite-dimensional.
(c) Show the inclusion $k \rightarrow \operatorname{Hom}_{k G}(V, V)$ found in (a) is an isomorphism. (For $f \in \operatorname{Hom}_{k G}(V, V)$, view f as a linear transformation and consider $f-\alpha I$, where α is an eigenvalue of f.)
8. Recall the following basic definitions and facts about ideals and varieties. Let k be a field and n be a positive integer.

- If $S \subseteq k^{n}$, the ideal of S is $\mathcal{I}(S):=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f(s)=0 \forall s \in\right.$ $S\} . \mathcal{I}(S)$ is a radical ideal in $k\left[x_{1}, \ldots, x_{n}\right]$.
- If $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is an ideal, then the variety of I in k^{n} is $\mathcal{V}(I):=\{s \in$ $\left.k^{n}: f(s)=0 \forall f \in I\right\}$.
- If $S \subseteq k^{n}$, then $\mathcal{V}(\mathcal{I}(S))$ is the smallest variety containing S and is called the Zariski closure of S, denoted as \bar{S}.
- Hilbert's Nullstellensatz: If k is algebraically closed and I is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ then $\mathcal{I}(\mathcal{V}(I))=\sqrt{I}$, where \sqrt{I} is the radical of I.
(a) If I and J are ideals in $k\left[x_{1}, \ldots, x_{n}\right]$, the ideal quotient of I by J is

$$
I: J=\left\{f \in k\left[x_{1}, \ldots, x_{n}\right]: f g \in I \forall g \in J\right\} .
$$

You may use without proof the fact that $I: J$ is an ideal in $k\left[x_{1}, \ldots, x_{n}\right]$ containing I.
Compute $\langle x z, y z\rangle:\langle z\rangle$ in $k[x, y, z]$.
(b) Compute $\mathcal{V}(\langle x z, y z\rangle), \mathcal{V}(\langle z\rangle)$ and $\mathcal{V}(\langle x z, y z\rangle:\langle z\rangle)$.
(c) Let I and J be ideals in $k\left[x_{1}, \ldots, x_{n}\right]$.
(i) Prove that $\mathcal{V}(I: J) \supseteq \overline{\mathcal{V}(I) \backslash \mathcal{V}(J)}$.
(ii) If k is algebraically closed and $I=\sqrt{I}$ then prove that $\mathcal{V}(I: J)=$ $\overline{\mathcal{V}(I) \backslash \mathcal{V}(J)}$. (Check this statement in the example from parts (a) and (b).)

