2010 Algebra Prelim

August 31, 2010

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count for more than several partial solutions. Always justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. Let \(p \) be a positive prime number, \(\mathbb{F}_p \) the field with \(p \) elements, and let \(G = \text{GL}_2(\mathbb{F}_p) \).

 (a) Compute the order of \(G \), \(|G|\).

 (b) Write down an explicit isomorphism from \(\mathbb{Z}/p\mathbb{Z} \) to

 \[
 U = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \bigg| a \in \mathbb{F}_p \right\}.
 \]

 (c) How many subgroups of order \(p \) does \(G \) have?

 Hint: compute \(gug^{-1} \) for \(g \in G \) and \(u \in U \); use this to find the size of the normalizer of \(U \) in \(G \).

2. (a) Give definitions of the following terms: (i) a finite length (left) module, (ii) a composition series for a module, and (iii) the length of a module,

 (b) Let \(l(M) \) denote the length of a module \(M \). Prove that if

 \[
 0 \to M_1 \to M_2 \to \cdots \to M_n \to 0
 \]

 is an exact sequence of modules of finite length, then

 \[
 \sum_{i=1}^{n} (-1)^i l(M_i) = 0.
 \]

3. Let \(\mathbb{F} \) be a field of characteristic \(p \), and \(G \) a group of order \(p^n \). Let \(R = \mathbb{F}[G] \) be the group ring (group algebra) of \(G \) over \(\mathbb{F} \), and let \(u := \sum_{x \in G} x \) (so \(u \) is an element of \(R \)).

 (a) Prove that \(u \) lies in the center of \(R \).
(b) Verify that Ru is a 2-sided ideal of R.
(c) Show there exists a positive integer k such that $u^k = 0$. Conclude that for such a k, $(Ru)^k = 0$.
(d) Show that R is not a semi-simple ring. (Warning: Please use the definition of a semisimple ring; do not use the result that a finite length ring fails to be semisimple if and only if it has a non-zero nilpotent ideal.)

4. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$ (where $a_n \neq 0$) and let $R = \mathbb{Z}[x]/(f)$. Prove that R is a finitely-generated module over \mathbb{Z} if and only if $a_n = \pm 1$.

5. Consider the ring
$$S = C[0,1] = \{f : [0,1] \to \mathbb{R} \mid f \text{ is continuous}\}$$
with the usual operations of addition and multiplication of functions.

(a) What are the invertible elements of S?
(b) For $a \in [0,1]$, define $I_a = \{f \in S \mid f(a) = 0\}$. Show that I_a is a maximal ideal of S.
(c) Show that the elements of any proper ideal of S have a common zero, i.e., if I is a proper ideal of S, then there exists $a \in [0,1]$ such that $f(a) = 0$ for all $f \in I$. Conclude that every maximal ideal of S is of the form I_a for some $a \in [0,1]$.
 Hint: as $[0,1]$ is compact, every open cover of $[0,1]$ contains a finite subcover.

6. (a) Let L/F be a field extension that is finite and Galois. Show that if the Galois group $\text{Gal}(L/F)$ is abelian then for every intermediate field $F \subseteq K \subseteq L$, K/F is also a Galois extension.
(b) Let $K = \mathbb{Q}\left(\sqrt{1 + \sqrt{2}}\right) \subset \mathbb{R}$. Show that K/Q is an extension of degree 4 that is not Galois.
(c) Let L be the smallest Galois extension of \mathbb{Q} that contains $K = \mathbb{Q}\left(\sqrt{1 + \sqrt{2}}\right)$. Compute the group $\text{Gal}(L/Q)$.

7. Let F be a field of characteristic zero, and let K be an algebraic extension of F that possesses the following property: every polynomial $f \in F[x]$ has a root in K. Show that K is algebraically closed.
 Hint: if $K(\theta)/K$ is algebraic, consider $F(\theta)/F$ and its normal closure; primitive elements might be of help.

8. Let G be the unique non-abelian group of order 21.
 (a) Describe all 1-dimensional complex representations of G.
 (b) How many (non-isomorphic) irreducible complex representations does G have and what are their dimensions?
 (c) Determine the character table of G.