2010 Algebra Prelim

August 31, 2010

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count for more than several partial solutions. Always justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. Let p be a positive prime number, \mathbb{F}_{p} the field with p elements, and let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$.
(a) Compute the order of $G,|G|$.
(b) Write down an explicit isomorphism from $\mathbb{Z} / p \mathbb{Z}$ to

$$
U=\left\{\left.\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{F}_{p}\right\} .
$$

(c) How many subgroups of order p does G have?

Hint: compute $g u g^{-1}$ for $g \in G$ and $u \in U$; use this to find the size of the normalizer of U in G.
2. (a) Give definitions of the following terms: (i) a finite length (left) module, (ii) a composition series for a module, and (iii) the length of a module,
(b) Let $l(M)$ denote the length of a module M. Prove that if

$$
0 \rightarrow M_{1} \rightarrow M_{2} \rightarrow \cdots \rightarrow M_{n} \rightarrow 0
$$

is an exact sequence of modules of finite length, then

$$
\sum_{i=1}^{n}(-1)^{i} l\left(M_{i}\right)=0
$$

3. Let \mathbb{F} be a field of characteristic p, and G a group of order p^{n}. Let $R=\mathbb{F}[G]$ be the group ring (group algebra) of G over \mathbb{F}, and let $u:=\sum_{x \in G} x$ (so u is an element of R).
(a) Prove that u lies in the center of R.
(b) Verify that $R u$ is a 2 -sided ideal of R.
(c) Show there exists a positive integer k such that $u^{k}=0$. Conclude that for such a $k,(R u)^{k}=0$.
(d) Show that R is not a semi-simple ring. (Warning: Please use the definition of a semisimple ring; do not use the result that a finite length ring fails to be semisimple if and only if it has a non-zero nilpotent ideal.)
4. Let $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \in \mathbb{Z}[x]$ (where $a_{n} \neq 0$) and let $R=\mathbb{Z}[x] /(f)$. Prove that R is a finitely-generated module over \mathbb{Z} if and only if $a_{n}= \pm 1$.
5. Consider the ring

$$
S=C[0,1]=\{f:[0,1] \rightarrow \mathbb{R} \mid f \text { is continuous }\}
$$

with the usual operations of addition and multiplication of functions.
(a) What are the invertible elements of S ?
(b) For $a \in[0,1]$, define $I_{a}=\{f \in S \mid f(a)=0\}$. Show that I_{a} is a maximal ideal of S.
(c) Show that the elements of any proper ideal of S have a common zero, i.e., if I is a proper ideal of S, then there exists $a \in[0,1]$ such that $f(a)=0$ for all $f \in I$. Conclude that every maximal ideal of S is of the form I_{a} for some $a \in[0,1]$.
Hint: as $[0,1]$ is compact, every open cover of $[0,1]$ contains a finite subcover.
6. (a) Let L / F be a field extension that is finite and Galois. Show that if the Galois $\operatorname{group} \operatorname{Gal}(L / F)$ is abelian then for every intermediate field $F \subseteq K \subseteq L, K / F$ is also a Galois extension.
(b) Let $K=\mathbb{Q}(\sqrt{1+\sqrt{2}}) \subset \mathbb{R}$. Show that K / \mathbb{Q} is an extension of degree 4 that is not Galois.
(c) Let L be the smallest Galois extension of \mathbb{Q} that contains $K=\mathbb{Q}(\sqrt{1+\sqrt{2}})$. Compute the group $\operatorname{Gal}(L / \mathbb{Q})$.
7. Let F be a field of characteristic zero, and let K be an algebraic extension of F that possesses the following property: every polynomial $f \in F[x]$ has a root in K. Show that K is algebraically closed.
Hint: if $K(\theta) / K$ is algebraic, consider $F(\theta) / F$ and its normal closure; primitive elements might be of help.
8. Let G be the unique non-abelian group of order 21 .
(a) Describe all 1-dimensional complex representations of G.
(b) How many (non-isomorphic) irreducible complex representations does G have and what are their dimensions?
(c) Determine the character table of G.

