Algebra Prelim September 12, 2011

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. Let $\mathrm{GL}_{2}(\mathbb{C})$ be the general linear group of 2×2 complex matrices, let H be the subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ consisting of non-zero multiples of the identity matrix, and let $\mathrm{PGL}_{2}(\mathbb{C})$ be the quotient group $\mathrm{GL}_{2}(\mathbb{C}) / \mathrm{H}$.
Let $A, B \in \mathrm{PGL}_{2}(\mathbb{C})$, and assume that both elements have order n. Prove that there exist $C \in \mathrm{PGL}_{2}(\mathbb{C})$ and a positive integer m such that

$$
C B C^{-1}=A^{m}
$$

2. In this problem, as you apply Sylow's Theorem, state precisely which portions you are using.
(a) Prove that there is no simple group of order 30.
(b) Suppose that G is a simple group of order 60. Determine the number of p-Sylow subgroups of G for each prime p dividing 60 , then prove that G is isomorphic to the alternating group A_{5}.

Note: In the second part, you needn't show that A_{5} is simple. You need only show that if there is a simple group of order 60 , then it must be isomorphic to A_{5}.
3. Describe the Galois group and the intermediate fields of the cyclotomic extension $\mathbb{Q}\left(\zeta_{12}\right) / \mathbb{Q}$.
4. Let

$$
R=\mathbb{Z}[x] /\left(x^{2}+x+1\right) .
$$

(a) Answer the following questions with suitable justification.
i. Is R a Noetherian ring?
ii. Is R an Artinian ring?
(b) Prove that R is an integrally closed domain.
5. Let R be a commutative ring. Recall that an element r of R is nilpotent if $r^{n}=0$ for some positive integer n and that the nilradical of R is the set $N(R)$ of nilpotent elements.
(a) Prove that

$$
N(R)=\bigcap_{P \text { prime }} P .
$$

(Hint: Given a non-nilpotent element r of R, you may wish to construct a prime ideal that does not contain r or its powers.)
(b) Given a positive integer m, determine the nilradical of $\mathbb{Z} /(m)$.
(c) Determine the nilradical of $\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$.
(d) Let $p(x, y)$ be a polynomial in $\mathbb{C}[x, y]$ such that for any complex number a, $p\left(a, a^{3 / 2}\right)=0$. Prove that $p(x, y)$ is divisible by $y^{2}-x^{3}$.
6. Given a finite group G, recall that its regular representation is the representation on the complex group algebra $\mathbb{C}[G]$ induced by left multiplication of G on itself and its adjoint representation is the representation on the complex group algebra $\mathbb{C}[G]$ induced by conjugation of G on itself.
(a) Let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$. Describe the number and dimensions of the irreducible representations of G. Then describe the decomposition of its regular representation as a direct sum of irreducible representations.
(b) Let H be a group of order 12. Show that its adjoint representation is reducible; that is, there is an H-invariant subspace of $\mathbb{C}[H]$ besides 0 and $\mathbb{C}[H]$.
7. Let M, N be finitely generated modules over \mathbb{Z}. Recall that $\operatorname{Ann}(M)$ is the ideal in \mathbb{Z} defined as follows:

$$
\operatorname{Ann}(M)=\{a \in \mathbb{Z} \mid a m=0 \text { for any } m \in M\}
$$

Prove that $M \otimes_{\mathbb{Z}} N=0$ if and only if $\operatorname{Ann}(M)+\operatorname{Ann}(N)=(1)$.
8. Let R be a commutative integral domain. Show that the following are equivalent:
(a) R is a field;
(b) R is a semi-simple ring;
(c) Any R-module is projective.

