Algebra Prelim September 12, 2011

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. Let $\operatorname{GL}_2(\mathbb{C})$ be the general linear group of 2×2 complex matrices, let H be the subgroup of $\operatorname{GL}_2(\mathbb{C})$ consisting of non-zero multiples of the identity matrix, and let $\operatorname{PGL}_2(\mathbb{C})$ be the quotient group $\operatorname{GL}_2(\mathbb{C})/\operatorname{H}$.

Let $A, B \in \text{PGL}_2(\mathbb{C})$, and assume that both elements have order n. Prove that there exist $C \in \text{PGL}_2(\mathbb{C})$ and a positive integer m such that

$$CBC^{-1} = A^m.$$

- 2. In this problem, as you apply Sylow's Theorem, state precisely which portions you are using.
 - (a) Prove that there is no simple group of order 30.
 - (b) Suppose that G is a simple group of order 60. Determine the number of p-Sylow subgroups of G for each prime p dividing 60, then prove that G is isomorphic to the alternating group A_5 .

Note: In the second part, you needn't show that A_5 is simple. You need only show that if there is a simple group of order 60, then it must be isomorphic to A_5 .

- 3. Describe the Galois group and the intermediate fields of the cyclotomic extension $\mathbb{Q}(\zeta_{12})/\mathbb{Q}$.
- 4. Let

$$R = \mathbb{Z}[x]/(x^2 + x + 1).$$

- (a) Answer the following questions with suitable justification.
 - i. Is R a Noetherian ring?
 - ii. Is R an Artinian ring?
- (b) Prove that R is an integrally closed domain.

- 5. Let R be a commutative ring. Recall that an element r of R is *nilpotent* if $r^n = 0$ for some positive integer n and that the *nilradical* of R is the set N(R) of nilpotent elements.
 - (a) Prove that

$$N(R) = \bigcap_{P \text{ prime}} P.$$

(Hint: Given a non-nilpotent element r of R, you may wish to construct a prime ideal that does not contain r or its powers.)

- (b) Given a positive integer m, determine the nilradical of $\mathbb{Z}/(m)$.
- (c) Determine the nilradical of $\mathbb{C}[x, y]/(y^2 x^3)$.
- (d) Let p(x, y) be a polynomial in $\mathbb{C}[x, y]$ such that for any complex number a, $p(a, a^{3/2}) = 0$. Prove that p(x, y) is divisible by $y^2 x^3$.
- 6. Given a finite group G, recall that its *regular representation* is the representation on the complex group algebra $\mathbb{C}[G]$ induced by left multiplication of G on itself and its *adjoint representation* is the representation on the complex group algebra $\mathbb{C}[G]$ induced by conjugation of G on itself.
 - (a) Let $G = GL_2(\mathbb{F}_2)$. Describe the number and dimensions of the irreducible representations of G. Then describe the decomposition of its regular representation as a direct sum of irreducible representations.
 - (b) Let H be a group of order 12. Show that its adjoint representation is reducible; that is, there is an H-invariant subspace of $\mathbb{C}[H]$ besides 0 and $\mathbb{C}[H]$.
- 7. Let M, N be finitely generated modules over \mathbb{Z} . Recall that Ann(M) is the ideal in \mathbb{Z} defined as follows:

$$\operatorname{Ann}(M) = \{ a \in \mathbb{Z} \mid am = 0 \text{ for any } m \in M \}$$

Prove that $M \otimes_{\mathbb{Z}} N = 0$ if and only if $\operatorname{Ann}(M) + \operatorname{Ann}(N) = (1)$.

- 8. Let R be a commutative integral domain. Show that the following are equivalent:
 - (a) R is a field;
 - (b) R is a semi-simple ring;
 - (c) Any *R*-module is projective.