Algebra Prelim

September 10, 2012
Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. Classify all groups of order 2012 up to isomorphism. (Hint: 503 is prime.)
2. For any positive integer n, let G_{n} be the group generated by a and b subject to the following three relations:

$$
a^{2}=1, \quad b^{2}=1, \quad \text { and } \quad(a b)^{n}=1
$$

(a) Find the order of the group G_{n}.
(b) Classify all irreducible complex representations of G_{4} up to isomorphism.
3. Let R be a (commutative) principal ideal domain, let M and N be finitely generated free R-modules, and let $\varphi: M \rightarrow N$ be an R-module homomorphism.
(a) Let K be the kernel of φ. Prove that K is a direct summand of M.
(b) Let C be the image of φ. Show by example (specifying R, M, N and φ) that C need not be a direct summand of N.
4. Let G be an abelian group. Prove that the group ring $\mathbb{Z}[G]$ is noetherian if and only if G is finitely generated.
5. Let $M_{3}(\mathbb{R})$ be the 3×3-matrix algebra over the real numbers \mathbb{R}. For any $b \in \mathbb{R}$, let $B \in M_{3}(\mathbb{R})$ be the $\operatorname{matrix}\left(\begin{array}{lll}1 & b & 0 \\ b & 1 & b \\ 0 & b & 1\end{array}\right)$. Find the set of numbers b so that the matrix equation $X^{2}=B$ has at least one, and only finitely many, solutions in $M_{3}(\mathbb{R})$.
6. Determine the Galois groups of the following polynomials over \mathbb{Q}.
(a) $f(x)=x^{4}+4 x^{2}+1$
(b) $f(x)=x^{4}+4 x^{2}-5$
7. Prove that if A is a finite abelian group, then $\operatorname{Hom}_{\mathbb{Z}}(A, \mathbb{Q} / \mathbb{Z}) \cong \operatorname{Ext}_{\mathbb{Z}}^{1}(A, \mathbb{Z}) \cong A$. $\left(\operatorname{Here}, \operatorname{Ext}_{\mathbb{Z}}^{1}(-,-)\right.$ is also sometimes written as $\operatorname{Ext}(-,-)$.)
8. Let A be the \mathbb{C}-algebra $\mathbb{C}[x, y]$, and define algebra automorphisms σ and τ of A by

$$
\sigma(x)=y, \quad \sigma(y)=x
$$

and

$$
\tau(x)=x, \quad \tau(y)=\xi y
$$

where $\xi \in \mathbb{C}$ is a primitive third root of unity (namely, $\xi \neq 1$ and $\xi^{3}=1$). Let G be the group of algebra automorphisms of A generated by σ and τ. Define

$$
A^{G}=\{f \in A \mid \phi(f)=f \text { for all } \phi \in G\}
$$

Then A^{G} is a subalgebra of A - you do not need to prove this. Describe the algebra A^{G} by finding a set of generators and a set of relations.

