Algebra Prelim 2013

INSTRUCTIONS: Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Notation: \mathbf{Q} is the field of rational numbers and \mathbf{C} is the field of complex numbers.

Problem 1. Let \mathbf{Q}^{\times}be the nonzero elements of \mathbf{Q}, a group under multiplication.
(a) Prove that the additive group of \mathbf{Q} has no maximal proper subgroups.
(b) Is the same statement true for the multiplicative group \mathbf{Q}^{\times}?

Problem 2. Let V be a finite-dimensional vector space over a field F of characteristic 0 . Let $B: V \times V \rightarrow F$ be a non-degenerate, skew-symmetric bilinear form. (In particular, we have $B(x, y)=-B(y, x)$ for all $x, y \in V$.) If U is a subset of V, let

$$
U^{\perp}=\{v \in V \mid B(u, v)=0 \text { for all } u \in U\} .
$$

(a) Let U be a subspace of V. Prove that U^{\perp} is a subspace of V and that

$$
\operatorname{dim}_{F}(U)+\operatorname{dim}_{F}\left(U^{\perp}\right)=\operatorname{dim}_{F}(V) .
$$

(b) Prove that there exists a subspace W of V such that $W^{\perp}=W$.

Problem 3.

(a) Suppose that G is a finitely-generated group. Let n be a positive integer. Prove that G has only finitely many subgroups of index n.
(b) Let p be a prime number. If G is any finitely-generated abelian group, let $t_{p}(G)$ denote the number of subgroups of G of index p. Determine the possible values of $t_{p}(G)$ as G varies over all finitely-generated abelian groups.

Problem 4. Suppose that G is a finite group of order 2013. Prove that G has a normal subgroup N of index 3 and that N is a cyclic group. Furthermore, prove that the center of G has order divisible by 11. (You will need the factorization $2013=3 \cdot 11 \cdot 61$.)

Problem 5. Let V be a finite dimensional vector space over \mathbf{C}. Let $n=\operatorname{dim}_{\mathbf{C}}(V)$. Let $T: V \rightarrow V$ be a linear map. Suppose that the following statement is true.

For every $c \in \mathbf{C}$, the subspace $\{v \in V \mid T(v)=c v\}$ of V has dimension 0 or 1 .
Prove that there exists a vector $w \in V$ such that $\left\{w, T(w), \ldots, T^{n-1}(w)\right\}$ is a linearly independent set.

Problem 6. This question concerns an extension K of \mathbf{Q} such that $[K: \mathbf{Q}]=8$. Assume that K / \mathbf{Q} is Galois and let $G=\operatorname{Gal}(K / \mathbf{Q})$. Furthermore, assume that G is nonabelian.
(a) Prove that K has a unique subfield F such that F / \mathbf{Q} is Galois and $[F: \mathbf{Q}]=4$.
(b) Prove that F has the form $F=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$, where d_{1} and d_{2} are nonzero integers.
(c) Suppose that G is the quaternionic group. Prove that d_{1} and d_{2} are positive integers.

Problem 7. Let $R=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ be the polynomial ring over \mathbf{C} in n indeterminates x_{1}, \ldots, x_{n}. Let S_{n} be the n-th symmetric group. If $\sigma \in S_{n}$, then we can identify σ with the automorphism of R defined as follows: $\sigma(c)=c$ for all $c \in \mathbf{C}$, and $\sigma\left(x_{i}\right)=x_{\sigma(i)}$ for all i, $1 \leq i \leq n$. Suppose that G is any subgroup of S_{n}. Let

$$
S=R^{G}=\{r \in R \mid \sigma(r)=r \text { for all } \sigma \in G\} .
$$

Prove that S is a finitely-generated \mathbf{C}-algebra.

Problem 8. This question concerns the polynomial ring $R=\mathbf{Z}[x, y]$ and the ideal $I=\left(5, x^{2}+2\right)$ in R.
(a) Prove that I is a prime ideal of R and that R / I is a PID.
(b) Give an explicit example of a maximal ideal of R which contains I. (Give a set of generators for such an ideal.)
(c) Show that there are infinitely many distinct maximal ideals in R which contain I.

