2015 Algebra Prelim

September 14, 2015

INSTRUCTIONS: Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. (a) Find an irreducible polynomial of degree 5 over the field \mathbb{Z}_{2} of two elements and use it to construct a field of order 32 as a quotient of the polynomial ring $\mathbb{Z}_{2}[x]$.
(b) Using the polynomial you found in part (a), find a 5×5 matrix M over \mathbb{Z}_{2} of order 31 , so that $M^{31}=I$ but $M \neq I$.
2. Find the minimal polynomial of $\sqrt{2}+\sqrt{3}$ over \mathbb{Q}. Justify your answer.
3. (a) Let R be a commutative ring with no nonzero nilpotent elements. Show that the only units in the polynomial ring $R[x]$ are the units of R, regarded as constant polynomials.
(b) Find all units in the polynomial ring $\mathbb{Z}_{4}[x]$.
4. Let p and q be two distinct primes. Prove that there is at most one nonabelian group of order $p q$ (up to isomorphisms) and describe the pairs (p, q) such that there is no non-abelian group of order $p q$.
5. (a) Let L be a Galois extension of a field K of degree 4 . What is the minimum number of subfields there could be strictly between K and L ? What is the maximum number of such subfields? Give examples where these bounds are attained.
(b) How do these numbers change if we assume only that L is separable (but not necessarily Galois) over K ?
6. Let R be a commutative algebra over \mathbb{C}. A derivation of R is a \mathbb{C}-linear map $D: R \rightarrow R$ such that (i) $D(1)=0$, and (ii) $D(a b)=D(a) b+a D(b)$ for all $a, b \in R$.
(a) Describe all derivations of the polynomial ring $\mathbb{C}[x]$.
(b) Let A be the subring (or \mathbb{C}-subalgebra) of $\operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ generated by all derivations of $\mathbb{C}[x]$ and the left multiplications by x. Prove that $\mathbb{C}[x]$ is a simple left A module. Note that the inclusion $A \rightarrow \operatorname{End}_{\mathbb{C}}(\mathbb{C}[x])$ defines a natural left A-module structure on $\mathbb{C}[x]$.
7. Let G be a non-abelian group of order p^{3} with p a prime.
(a) Determine the order of the center Z of G.
(b) Determine the number of inequivalent complex 1-dimensional representations of G.
(c) Compute the dimensions of all the inequivalent irreducible representations of G and verify that the number of such representations equals the number of conjugacy classes of G.
8. Prove that every finitely generated projective module over a commutative noetherian local ring is free.
