Complex Analysis Preliminary Exam

Autumn 2005

There are eight problems. Do as many problems as you can. Four completely correct problems will be a clear pass. Complete problems count more than many problem fragments. In all problems, \mathbf{C} denotes the complex numbers and \mathbf{D} the unit disc.

1. Compute using residues, where n is a positive even integer:

$$\int_0^\infty \frac{dx}{1+x^n}$$

Hint: Find a contour that surrounds only one pole.

2. Let a and b be complex numbers such that 0 < |a| < |b|. Write down all Taylor and Laurent series of

$$f(z) = \frac{1}{(z-a)(z-b)}$$

centered at 0, and state where they converge.

- 3. Let G be a domain and $f_n : G \to \mathbf{C}$ be a sequence of analytic functions such that $f_n(z)$ converges for every $z \in G$. Suppose there are analytic functions g_n with $|g_n| \leq 1$ and $|f_n g_n| \geq 1$ in G. Prove that f_n converges uniformly on compact subsets of G.
- 4. Let $U = \{z : |z 1| < 2 \text{ and } |z + 1| < 2\}$. Find a conformal map $f : U \to \mathbf{D}$. Note: It is acceptable to leave your answer as a composition of conformal maps.
- 5. Let f be analytic in $H = \{x > 0\}$ and suppose the real part satisfies $0 \le \Re f(x + iy) \le Mx$ for some constant M > 0 and all $x + iy \in H$. Show that f(z) = mz + ic for some real constants c and $0 \le m \le M$.
- 6. Let f be analytic in a disc $D = \{|z| < r\}$ and let $\gamma : [a, b] \to \mathbb{C}$ be a curve (continuous function) with initial point $\gamma(a)$ in D.
 - (a) Write down the definition that f has an analytic continuation along γ .

(b) Now suppose that f has an analytic continuation along every line segment beginning at 0. Prove that f can be extended to a function analytic on **C**.

- 7. Write down an infinite product that converges to an entire function f(z) with zeroes of order 1 at the points $z_n = \sqrt{n}$, n = 1, 2, 3, ..., and no other zeroes. Prove the convergence of your product.
- 8. Let A denote the annulus {r₁ < |z| < r₂}.
 (a) Construct a harmonic function h on A such that h is continuous up to the boundary and h = 0 on {|z| = r₁} and h = 1 on {|z| = r₂}.
 (b) Let u be harmonic in A and continuous up to the boundary, and set m_j = max_{|z|=r₁} u(z), for j = 1, 2. Find the best possible upper bound for u(z) in terms of m₁, m₂, r₁, r₂ and z.