Complex Analysis Preliminary Exam

Autumn 2005
There are eight problems. Do as many problems as you can. Four completely correct problems will be a clear pass. Complete problems count more than many problem fragments. In all problems, \mathbf{C} denotes the complex numbers and \mathbf{D} the unit disc.

1. Compute using residues, where n is a positive even integer:

$$
\int_{0}^{\infty} \frac{d x}{1+x^{n}}
$$

Hint: Find a contour that surrounds only one pole.
2. Let a and b be complex numbers such that $0<|a|<|b|$. Write down all Taylor and Laurent series of

$$
f(z)=\frac{1}{(z-a)(z-b)}
$$

centered at 0 , and state where they converge.
3. Let G be a domain and $f_{n}: G \rightarrow \mathbf{C}$ be a sequence of analytic functions such that $f_{n}(z)$ converges for every $z \in G$. Suppose there are analytic functions g_{n} with $\left|g_{n}\right| \leq 1$ and $\left|f_{n}-g_{n}\right| \geq 1$ in G. Prove that f_{n} converges uniformly on compact subsets of G.
4. Let $U=\{z:|z-1|<2$ and $|z+1|<2\}$. Find a conformal map $f: U \rightarrow \mathbf{D}$. Note: It is acceptable to leave your answer as a composition of conformal maps.
5. Let f be analytic in $H=\{x>0\}$ and suppose the real part satisfies $0 \leq \Re f(x+i y) \leq$ $M x$ for some constant $M>0$ and all $x+i y \in H$. Show that $f(z)=m z+i c$ for some real constants c and $0 \leq m \leq M$.
6. Let f be analytic in a disc $D=\{|z|<r\}$ and let $\gamma:[a, b] \rightarrow \mathbf{C}$ be a curve (continuous function) with initial point $\gamma(a)$ in D.
(a) Write down the definition that f has an analytic continuation along γ.
(b) Now suppose that f has an analytic continuation along every line segment beginning at 0 . Prove that f can be extended to a function analytic on \mathbf{C}.
7. Write down an infinite product that converges to an entire function $f(z)$ with zeroes of order 1 at the points $z_{n}=\sqrt{n}, n=1,2,3, \ldots$, and no other zeroes. Prove the convergence of your product.
8. Let A denote the annulus $\left\{r_{1}<|z|<r_{2}\right\}$.
(a) Construct a harmonic function h on A such that h is continuous up to the boundary and $h=0$ on $\left\{|z|=r_{1}\right\}$ and $h=1$ on $\left\{|z|=r_{2}\right\}$.
(b) Let u be harmonic in A and continuous up to the boundary, and set $m_{j}=$ $\max _{\left\{|z|=r_{1}\right\}} u(z)$, for $j=1,2$. Find the best possible upper bound for $u(z)$ in terms of $m_{1}, m_{2}, r_{1}, r_{2}$ and z.

