Complex Analysis Preliminary Exam

Autumn 2009
Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

In all problems, \mathbb{C} denotes the complex numbers, \mathbb{D} the unit disc, and \mathbb{H} the right half-plane. A domain is an open connected set.

1. Let $\operatorname{Re} z>0$. Use an appropriate contour to show that

$$
\int_{0}^{\infty} \frac{e^{-t}-e^{-t z}}{t} d t=\log z
$$

2. If $a>1$, prove that $z+e^{-z}$ assumes the value a exactly once in \mathbb{H}.
3. Let f be an entire function with the property that for every z there is n such that the n-th derivative $f^{(n)}(z)=0$. Show that f is a polynomial.
4. If D and D^{\prime} are open discs with $\overline{D^{\prime}} \subset D$, show that there is $R>1$ and a linear fractional transformation f that maps $D \backslash \overline{D^{\prime}}$ conformally onto $\{1<|z|<R\}$.
5. Let $I=[-1,1]$ and $W=\{z \in \mathbb{C}:|z|<2\}$.
(a) Show that every bounded harmonic function in $W \backslash\{0\}$ extends continuously to W. (If you already know a theorem to this effect, state and prove it).
(b) Explicitly construct a bounded harmonic function u on $W \backslash I$ that does not extend continuously to W.
6. (a) If $f: \mathbb{D} \rightarrow \mathbb{H}$ is analytic, show that $\left|f^{\prime}(0)\right| \leq 2 \operatorname{Re} f(0)$.
(b) If $f: \mathbb{D} \rightarrow \mathbb{D} \backslash\{0\}$ is analytic, show that $\left|f^{\prime}(0)\right| \leq \frac{2}{e}$.
7. (a) Prove that $\prod_{k=1}^{\infty}\left(1+\frac{i}{k}\right)$ diverges but that $\prod_{k=1}^{\infty}\left|1+\frac{i}{k}\right|$ converges.
(b) Construct an infinite product that is an entire function with simple zeroes precisely at the positive integers, and prove convergence from first principles.
8. Let D be a bounded domain and $f: D \rightarrow D$ analytic.

If f has a fixed point $f\left(z_{0}\right)=z_{0}$ with $\left|f^{\prime}\left(z_{0}\right)\right|<1$, show that the sequence of iterates $f_{n}=f \circ f \circ \cdots \circ f$ (n compositions) converges uniformly on compact subsets of D.

