Complex Prelim, September 2010

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. Compute

$$
\int_{0}^{\infty} \frac{d x}{x^{c}(x+1)}
$$

for each $c \in(0,1)$. Justify all your steps.
2. (a) Construct a conformal mapping of the upper half-plane onto the angle region with an interval removed:

$$
\Omega=\{z \in \mathbb{C}: z \neq 0, \arg z \in(-\pi / 4, \pi / 4)\} \backslash\{z: \Im(z)=0,0 \leq \Re(z) \leq 1\}
$$

(b) f is a bounded harmonic function on Ω such that f is continuous on $\partial \Omega \backslash\{0\}$ and

$$
f(z)= \begin{cases}0, & \text { if } \arg z=\pi / 4 \\ 1, & \text { if } \arg z=-\pi / 4 \\ 3, & \text { on }\{z: \Im(z)=0,0 \leq \Re(z) \leq 1\}\end{cases}
$$

Find an expression for $f(3)$.
3. Let f be analytic in the closed unit disc, with $f(-\log 2)=0$ and

$$
|f(z)| \leq\left|e^{z}\right| \quad \text { for all } z \text { with }|z|=1
$$

How large can $|f(\log 2)|$ be? Find the best possible upper bound.
4. How many roots of the equation $z^{4}+8 z^{3}+3 z^{2}+8 z+3=0$ lie in the right half-plane?
5. Let $\mathbb{N}=\{1,2,3, \ldots\}$. Find an explicit series representation for a meromorphic function on \mathbb{C}, which is holomorphic on $\mathbb{C}-\{\mathbb{N}\}$, and which has at each point $n \in \mathbb{N}$ a simple pole with residue n. Include proofs of all required convergence statements.
6. Let $g(z)=u+i v$ be holomorphic in the domain
$\Omega=\{z \in \mathbb{C}:|z|<1, y>0\}$ and continuous in the closure $\bar{\Omega}$. Assume that
(i) $u=0$ for $y=0$ and $x>0$;
(ii) $v=0$ for $y=0$ and $x<0$.

Show that

$$
\frac{|g(z)|}{|z|^{1 / 2}} \text { is bounded in } \Omega \text {. }
$$

7. Let \mathcal{F} be the set of functions f holomorphic in the unit disc \mathbb{D} such that

$$
\iint_{|z|<1}|f(x+i y)|^{2} d x d y \leq 1
$$

Prove that \mathcal{F} is a normal family in \mathbb{D}.
8. Define

$$
F(z)=\int_{0}^{\infty} x^{z-1} e^{-x^{2}} d x
$$

for $\Re(z)>0$.
(a) Prove that F is an analytic function in the right half-plane $\{z: \Re(z)>0\}$.
(b) Prove that F extends to a meromorphic function on the whole complex plane.
(c) Find all poles of F and find the singular parts of F at these poles.

