Complex Analysis Preliminary Exam

Autumn 2012

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.
In all problems, \mathbb{C} denotes the complex numbers and \mathbb{D} the open unit disc. A domain is an open connected set.

1. Is there a conformal map from the slit strip

$$
D=\{x+i y:-1<y<1\} \backslash\{x+i y: x \leq 0, y=0\}
$$

onto \mathbb{D} ? If yes, find one. If no, prove that there is none.
2. Let $f(z)=u(z)+i v(z)$ be a non-constant entire function.
a) Use the Poisson integral formula to show that for all $|z|<r$,

$$
f(z)=i v(0)+\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r e^{i t}+z}{r e^{i t}-z} u\left(r e^{i t}\right) d t .
$$

b) Show that if $u(z) \leq|z|$ for all $z \in \mathbb{C}$, then f is linear.
c) Show that there are $a>0, C>0$ so that for all $r \geq 0$,

$$
\max _{z \in \mathbb{C},|z|=r}\left|e^{f(z)}\right| \geq C e^{a r}
$$

3. Let

$$
f(z)=\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{3}}\right) .
$$

Show that for every $w \in \mathbb{C}$ the equation $f(z)=w$ has infinitely many solutions. You may use the conclusion of problem 2c), even if you did not solve that problem.
4. Let \mathcal{F} be the family of all analytic functions $f: \mathbb{D} \rightarrow \mathbb{D}$.
a) State Montel's theorem and use it to show that there exists a function $F \in \mathcal{F}$ that maximizes $\left|f^{\prime}\left(\frac{1}{2}\right)\right|$. In other words, show that

$$
\sup _{f \in \mathcal{F}}\left|f^{\prime}\left(\frac{1}{2}\right)\right|=\left|F^{\prime}\left(\frac{1}{2}\right)\right|
$$

for some $F \in \mathcal{F}$.
b) Use Schwarz' Lemma to determine all functions F from part a).
5. Let $D \subsetneq \mathbb{C}$ be a simply connected domain. Determine a pair (a, b) of complex numbers such that the following statement is true: For every analytic function $f: D \rightarrow \mathbb{C} \backslash\{a, b\}$ there is an analytic function g on D with $f(z)=g(z)^{3}+g(z)$ for all $z \in D$.
6. Show that

$$
\int_{-\infty}^{\infty} \frac{\cos x}{e^{x}+e^{-x}} d x=\frac{\pi}{e^{\pi / 2}+e^{-\pi / 2}}
$$

7. Let $\tau \in \mathbb{C} \backslash \mathbb{R}$ and $\Lambda=\{a+b \tau \mid a, b \in \mathbb{Z}\}$. Let f be a non-constant meromorphic function with the property that

$$
f(z+\omega)=f(z)
$$

for all $z \in \mathbb{C}$ and $\omega \in \Lambda$ (such an f is called elliptic with respect to Λ). For $a \in \mathbb{C}$, denote

$$
P_{a}=\{a+t+s \tau: 0 \leq t<1,0 \leq s<1\} .
$$

a) Use the argument principle to show that for each $a \in \mathbb{C}, f$ assumes each value $c \in \mathbb{C} \cup\{\infty\}$ the same number of times in P_{a}, counting multiplicities. This number is called the degree of f.
b) Show that the degree of f is at least 2 .
8. State a version of the reflection principle, and use it to prove the following: If u is a non-constant harmonic function in \mathbb{C} that vanishes on two intersecting lines, then the angle between the lines is a rational multiple of π.

