Complex Analysis Preliminary Exam

Autumn 2013
Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

In all of these problems, \mathbb{C} will denote the complex plane and $\mathbb{D}=\{z:|z|<1\}$ will denote the open unit disk. A domain is an open connected subset of \mathbb{C}.

1. Calculate the following integral:

$$
\int_{0}^{\infty} \frac{\cos x-1}{x^{2}} d x
$$

2. Suppose $f(z)$ is analytic on the unit disc \mathbb{D} and continuous on the closed unit disc $\overline{\mathbb{D}}$. Assume that $f(z)=0$ on an arc of the circle $|z|=1$. Show that $f(z) \equiv 0$.
3. Let \mathcal{F} be the class of holomorphic functions f in the slit half-plane

$$
S=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\} \backslash(0,1]
$$

satisfying $|f(z)|<1$ for all $z \in S$ and $f(\sqrt{2})=0$. Find $f \in \mathcal{F}$ such that $|f(4)|=$ $\sup _{g \in \mathcal{F}}|g(4)|$, and prove your answer correct. (You may write your function as a composition of several other functions, if that is more convenient.)
4. Suppose $\left\{a_{n}\right\}$ is a sequence of distinct complex numbers with no limit point, and $\left\{b_{n}\right\}$ is an arbitrary sequence of complex numbers. Prove that there exists an entire function f with $f\left(a_{n}\right)=b_{n}$ for $n=1,2,3, \ldots$ (You may use general theorems such as the Mittag-Leffler or Weierstrass theorem without proof, as long as you provide their statements.)
5. Let $f(z)$ be analytic in \mathbb{D} except for finitely many poles. Suppose that $\lim _{z \rightarrow e^{i \theta}}|f(z)|=$ 1 for every $\theta \in[0,2 \pi)$. Prove that f is a rational function.
6. Suppose f_{n} is a sequence of holomorphic functions in \mathbb{D} for which $u(z)=\lim \operatorname{Re}\left(f_{n}(z)\right)$ exists uniformly on every compact subset of \mathbb{D}. Also assume there is a point $z_{0} \in \mathbb{D}$ for which $v\left(z_{0}\right)=\lim \operatorname{Im}\left(f_{n}\left(z_{0}\right)\right)$ exists. Prove f_{n} converges uniformly on every compact subset of \mathbb{D}.
7. Suppose $\phi:[-1,1] \rightarrow \mathbb{C}$ is a continuous function, and define $f: \mathbb{C} \backslash[-1,1] \rightarrow \mathbb{C}$ by

$$
f(z)=\int_{-1}^{1} \frac{\phi(t)}{t-z} d t
$$

Prove that f is holomorphic on $\mathbb{C} \backslash[-1,1]$, and find an expression for the Laurent coefficients of f about ∞ in terms of ϕ.
8. For any positive integer n, define $f_{n}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ by

$$
f_{n}(z)=1+\frac{1}{z}+\frac{1}{2!z^{2}}+\cdots+\frac{1}{n!z^{n}}
$$

Let $R>0$ be given. Show that for sufficiently large n, all of the zeros of f_{n} lie inside the disk $|z|<R$.

