Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. Suppose $a > 0$ and $b > 0$. Compute
\[\int_{0}^{\infty} \frac{x \sin(ax)}{x^2 + b^2} \, dx. \]

2. Let $f(z) = \frac{z - a}{1 - \bar{a}z}$, where $|a| < 1$. Let $D = \{ z = x + iy : |z| < 1 \}$. Prove that
\[\frac{1}{\pi} \int_{D} |f'(z)| \, dx \, dy = \frac{1 - |a|^2}{|a|^2} \log \left(\frac{1}{1 - |a|^2} \right). \]

3. Let W be an open set containing the real axis \mathbb{R} in \mathbb{C}. Suppose f is analytic in W and
\[\text{Im}(z) \text{Im}(f(z)) \geq 0 \]
for $z \in W$. Prove that
\[f'(z) > 0 \]
for all $z \in \mathbb{R}$.

4. Suppose u is harmonic and bounded in a bounded region Ω. Suppose further that there is a $\zeta \in \partial \Omega$ and a neighborhood W of $\partial \Omega \setminus \{\zeta\}$ such that $u \leq 1$ on $W \cap \Omega$.
 a. Prove that $u \leq 1$ on Ω.
 b. Give an example to show that the result can fail if we do not assume u is bounded.
 Hint: consider $v = u + \varepsilon \log |(z - \zeta)/R|$ where $\varepsilon > 0$ and R is the diameter of Ω.

5. Suppose u and v are positive harmonic functions on the unit disk $D = \{ z : |z| < 1 \}$, which are continuous on the closure of D and equal to 0 on an open arc $J \subset \partial D$, with $1 \in J$. Prove
\[\lim_{z \to D^{-1}} \frac{u(z)}{v(z)} \]
extists and is positive.

6. Let $f(z)$ be a nowhere zero holomorphic function on $S = \{ z : 0 < \text{Re} z < 1 \}$ which is bounded uniformly, i.e. $|f(z)| \leq M < \infty$ for all $z \in S$. Suppose that
\[\lim_{n \to \infty} f\left(\frac{1}{2} + ni \right) = 0 \]
for $n \in \mathbb{N}$. Prove that
\[\lim_{n \to \infty} f(z + ni) = 0 \]
for each $z \in S$.

1
7. Let $B(z, r) = \{ w : |w - z| < r \}$ be the open ball centered at z of radius r. Prove that there exists an entire function f with the property that for all $\varepsilon > 0$ there exists an $N < \infty$ (depending on ε) such that

$$ |f(z) - \sin z| < \varepsilon \quad \text{on} \quad \bigcup_{n=N}^{\infty} B(2n, 1/3) $$

and

$$ |f(z) - \cos z| < \varepsilon \quad \text{on} \quad \bigcup_{n=N}^{\infty} B(2n + 1, 1/3). $$

8. Suppose g_1 and g_2 are entire with no common zeros. Show that there exist entire functions f_1 and f_2 such that

$$ f_1 g_1 + f_2 g_2 = e^z. $$

Hint: $f_2 = \frac{e^z - f_1 g_1}{g_2}$. Try to find f_1 entire so that the right hand side is entire.