Complex Analysis Preliminary Exam

Autumn 2014
Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. Suppose $a>0$ and $b>0$. Compute

$$
\int_{0}^{\infty} \frac{x \sin (a x)}{x^{2}+b^{2}} d x
$$

2. Let $f(z)=\frac{z-a}{1-\bar{a} z}$, where $|a|<1$. Let $\mathbb{D}=\{z=x+i y:|z|<1\}$. Prove that

$$
\frac{1}{\pi} \int_{\mathbb{D}}\left|f^{\prime}(z)\right| d x d y=\frac{1-|a|^{2}}{|a|^{2}} \log \left(\frac{1}{1-|a|^{2}}\right)
$$

3. Let W be an open set containing the real axis \mathbb{R} in \mathbb{C}. Suppose f is analytic in W and

$$
\operatorname{Im}(z) \operatorname{Im}(f(z)) \geq 0
$$

for $z \in W$. Prove that

$$
f^{\prime}(z)>0
$$

for all $z \in \mathbb{R}$.
4. Suppose u is harmonic and bounded in a bounded region Ω. Suppose further that there is a $\zeta \in \partial \Omega$ and a neighborhood W of $\partial \Omega \backslash\{\zeta\}$ such that $u \leq 1$ on $W \cap \Omega$.
a. Prove that $u \leq 1$ on Ω.
b. Give an example to show that the result can fail if we do not assume u is bounded.

Hint: consider $v=u+\varepsilon \log |(z-\zeta) / R|$ where $\varepsilon>0$ and R is the diameter of Ω.
5. Suppose u and v are positive harmonic functions on the unit disk $\mathbb{D}=\{z:|z|<1\}$, which are continuous on the closure of \mathbb{D} and equal to 0 on an open arc $J \subset \partial \mathbb{D}$, with $1 \in J$. Prove

$$
\lim _{z \in \mathbb{D} \rightarrow 1} \frac{u(z)}{v(z)}
$$

exists and is positive.
6. Let $f(z)$ be a nowhere zero holomorphic function on $\mathbb{S}=\{z: 0<\operatorname{Re} z<1\}$ which is bounded uniformly, i.e. $|f(z)| \leq M<\infty$ for all $z \in \mathbb{S}$. Suppose that

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{2}+n i\right)=0
$$

for $n \in \mathbb{N}$. Prove that

$$
\lim _{n \rightarrow \infty} f(z+n i)=0
$$

for each $z \in \mathbb{S}$.
7. Let $B(z, r)=\{w:|w-z|<r\}$ be the open ball centered at z of radius r. Prove that there exists an entire function f with the property that for all $\varepsilon>0$ there exists an $N<\infty$ (depending on ε) such that

$$
|f(z)-\sin z|<\varepsilon \quad \text { on } \bigcup_{n=N}^{\infty} B(2 n, 1 / 3)
$$

and

$$
|f(z)-\cos z|<\varepsilon \quad \text { on } \bigcup_{n=N}^{\infty} B(2 n+1,1 / 3)
$$

8. Suppose g_{1} and g_{2} are entire with no common zeros. Show that there exist entire functions f_{1} and f_{2} such that

$$
f_{1} g_{1}+f_{2} g_{2}=e^{z}
$$

Hint: $f_{2}=\frac{e^{z}-f_{1} g_{1}}{g_{2}}$. Try to find f_{1} entire so that the right hand side is entire.

