Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

In all of these problems, \(\mathbb{C} \) denotes the complex plane and \(\mathbb{D} = \{ z : |z| < 1 \} \) denotes the open unit disk. A **domain** is an open connected subset of \(\mathbb{C} \).

1. Evaluate both integrals
 \[
 \int_0^\infty \frac{\log x}{1 + x^2} \, dx \quad \text{and} \quad \int_0^\infty \frac{(\log x)^2}{1 + x^2} \, dx.
 \]

2. State a definition of local uniform convergence of infinite products \(\prod_{n=0}^\infty f_n(z) \) of holomorphic functions \(f_n \) on a domain \(G \). Next, let \(p(z) = z^2 + z + 1 \) and show that the infinite product
 \[
 P(z) = \prod_{n=0}^\infty p(z^{3^n})
 \]
 converges locally uniformly in \(\mathbb{D} \). Finally, prove that \(P(z) = \frac{1}{1-z} \) for all \(|z| < 1 \).

3. How many roots does \(2z^7 - 4z^3 + 1 = 0 \) have in the annulus \(1 < |z| < 2 \)?

4. Suppose \(G \subset \mathbb{C} \) is a domain, and \(f_n : G \to \mathbb{C} \) is a sequence of holomorphic functions satisfying \(\int_{G} |f_n(x+iy)|^2 \, dx \, dy = 1 \) for each \(n \). Show that some subsequence converges to a holomorphic function on \(G \).

5. Suppose \(f \) is a nowhere vanishing holomorphic function on the punctured disk \(\mathbb{D} \setminus \{0\} \). Prove that there is an integer \(n \) and a holomorphic function \(g \) on \(\mathbb{D} \setminus \{0\} \) such that \(f(z) = z^n e^{g(z)} \).

6. Consider the domain \(G = \{ z \in \mathbb{C} : \text{Im} z > 0 \text{ and } |z-i| > 1/2 \} \). Determine all functions \(u : G \to \mathbb{R} \) that are bounded and harmonic on \(G \) and satisfy \(u(x) = 1 \) for \(x \in \mathbb{R} \) and \(u(z) = 2 \) for \(\{|z-i| = 1/2\} \). Hint: Construct a conformal map from \(G \) onto a concentric annulus.

7. Find a conformal map from \(\mathbb{D} \) onto the portion of the upper half plane inside \(\mathbb{D} \) and outside the circle \(|z - 1/2| = 1/2 \), \(G = \{ z \in \mathbb{D} : \text{Re} z > 0, |z - 1/2| > 1/2 \} \). You may express your map as a composition of simpler maps.

8. If \(f \) is holomorphic and bounded in \(\mathbb{C} \setminus \mathbb{D} \), and if \(f \) is real-valued on the vertical line segment \(\{-2 + iy : 0 \leq y \leq 1\} \), show that \(f \) is constant.