Complex Analysis Preliminary Exam

Autumn 2015

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

In all of these problems, \mathbb{C} denotes the complex plane and $\mathbb{D}=\{z:|z|<1\}$ denotes the open unit disk. A domain is an open connected subset of \mathbb{C}.

1. Evaluate both integrals

$$
\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x \quad \text { and } \quad \int_{0}^{\infty} \frac{(\log x)^{2}}{1+x^{2}} d x
$$

2. State a definition of local uniform convergence of infinite products $\prod_{n=0}^{\infty} f_{n}(z)$ of holomorphic functions f_{n} on a domain G. Next, let $p(z)=z^{2}+z+1$ and show that the infinite product

$$
P(z)=\prod_{n=0}^{\infty} p\left(z^{3^{n}}\right)
$$

converges locally uniformly in \mathbb{D}. Finally, prove that $P(z)=\frac{1}{1-z}$ for all $|z|<1$.
3. How many roots does $2 z^{7}-4 z^{3}+1=0$ have in the annulus $1<|z|<2$?
4. Suppose $G \subset \mathbb{C}$ is a domain, and $f_{n}: G \rightarrow \mathbb{C}$ is a sequence of holomorphic functions satisfying $\iint_{G}\left|f_{n}(x+i y)\right|^{2} d x d y=1$ for each n. Show that some subsequence converges to a holomorphic function on G.
5. Suppose f is a nowhere vanishing holomorphic function on the punctured disk $\mathbb{D} \backslash\{0\}$. Prove that there is an integer n and a holomorphic function g on $\mathbb{D} \backslash\{0\}$ such that $f(z)=z^{n} e^{g(z)}$.
6. Consider the domain $G=\{z \in \mathbb{C}: \operatorname{Im} z>0$ and $|z-i|>1 / 2\}$. Determine all functions $u: G \rightarrow \mathbb{R}$ that are bounded and harmonic on G and satisfy $u(x)=1$ for $x \in \mathbb{R}$ and $u(z)=2$ for $\{|z-i|=1 / 2\}$. Hint: Construct a conformal map from G onto a concentric annulus.
7. Find a conformal map from \mathbb{D} onto the portion of the upper half plane inside \mathbb{D} and outside the circle $|z-1 / 2|=1 / 2, G=\{z \in \mathbb{D}: \operatorname{Re} z>0,|z-1 / 2|>1 / 2\}$. You may express your map as a composition of simpler maps.
8. If f is holomorphic and bounded in $\mathbb{C} \backslash \mathbb{D}$, and if f is real-valued on the vertical line segment $\{-2+i y: 0 \leq y \leq 1\}$, show that f is constant.

