Autumn 2016
Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. By means of the calculus of residues, evaluate

$$
\int_{0}^{\infty} \frac{\sqrt{x} \log x}{(1+x)^{2}} d x
$$

Justify all limiting operations and estimates.
2. Find all functions f analytic in the interior of the rectangle with vertices $1+i, 1-i / 2,-1 / 2-i / 2$, $-1 / 2+i$ such that $f(z+1)=f(z)$ and $f(z+i)=1+f(z)$ wherever these equalities are defined.
3. Suppose P is a polynomial of degree $n>1$. Let

$$
E=\left\{z \in \mathbb{C}: P^{-1}(z) \text { consists of } n \text { distinct points }\right\}
$$

Let Q be another polynomial and define

$$
\widetilde{Q}: E \rightarrow \mathbb{C}
$$

by

$$
\widetilde{Q}(z)=\sum_{\zeta \in P^{-1}(z)} Q(\zeta)
$$

(a) Prove E is open.
(b) Prove \widetilde{Q} extends to be an entire function.
(c) Prove that the extension of \widetilde{Q} is a polynomial.
4. Let p and q be distinct points in the boundary of the unit disk $\mathbb{D}=\{z:|z|<1\}$, and let U_{p} and U_{q} be neighborhoods of p and q respectively in \mathbb{C}. Prove that no matter how small U_{p} and U_{q} may be, there is a conformal map ϕ of \mathbb{D} onto \mathbb{D} so that $\phi\left(\mathbb{D} \backslash U_{q}\right) \subset U_{p}$.
5. Let $f(t)$ be a real valued infinitely differentiable function on $[0,1]$. Define $\Omega=\{z: \operatorname{Re}(z)>-1\}$ and $g(z): \Omega \rightarrow \mathbb{C}$ by

$$
g(z)=\int_{0}^{1} t^{z} f(t) d t
$$

(a) Prove that g is holomorphic on Ω.
(b) Prove that g can be continued analytically to a meromorphic function on the entire plane.
6. Let $S=\{z:|z|<1, \operatorname{Re}(z)>0\}$. Find (explicitly) a bounded harmonic function u defined on S such that $u(z) \rightarrow 0$ as $z \rightarrow i t$, with $-1<t<1$ and $u(z) \rightarrow 1$ as $z \rightarrow a+i b$ with $a>0,-1<b<1$ and $a^{2}+b^{2}=1$. A complete answer will be in terms of elementary functions and not involve any integrals. Prove that u is unique.
7. Suppose f is a function defined on the unit disk $\mathbb{D}=\{z:|z|<1\}$ with the property that for each triple of points $a, b, c \in \mathbb{D}$ there is an analytic function g (possibly depending on a, b, c) which is bounded by 1 and satisfies $g(a)=f(a), g(b)=f(b)$, and $g(c)=f(c)$. Prove that f is analytic in \mathbb{D} and is bounded by 1. Hint:

Consider first the special case where $a=f(a)=0$. If z_{n} is a sequence tending to 0 , prove that $f\left(z_{n}\right) / z_{n}$ is a Cauchy sequence.
8. (a) Suppose $0<a_{n}<1$. Prove that if

$$
\lim _{M \rightarrow \infty} \prod_{1}^{M}\left(1-a_{n}\right)=0
$$

then $\sum a_{n}$ diverges. Don't just quote a theorem or lemma, prove it directly.
(b) Let $p_{k}(z)$ be a polynomial of degree k with $p_{k}(0)=1$ such that p_{k} has no zeros in $\overline{\mathbb{D}\left(0, k^{3}\right)}$. Show that $\prod_{1}^{\infty} p_{k}(z)$ converges locally uniformly in \mathbb{C}.

