LINEAR ANALYSIS PRELIM EXAM

Autumn 2005

- There are 8 questions. You are guaranteed to pass the exam if you answer at least **four** questions correctly. Partial answers may count, but in general it is preferable to give complete answers to fewer questions than partial answers to more questions.
- If you cannot answer a part of a question, you may assume the result and proceed to a subsequent part.

- 1. Let $A \in \mathbb{R}^{n \times n}$ be a real symmetric $n \times n$ matrix. Let $\{v_1, v_2, \ldots, v_n\}$ be an orthonormal basis of \mathbb{R}^n (using the usual inner product on \mathbb{R}^n) consisting of eigenvectors of A, corresponding to the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ of A.
 - (a) Show that the set $\{v_k v_\ell^T \in \mathbb{R}^{n \times n} : 1 \le k \le n, 1 \le \ell \le n\}$ forms a basis of $\mathbb{R}^{n \times n}$.
 - (b) Show that

$$A = \sum_{k=1}^{n} \lambda_k \, v_k \, v_k^T$$

is the representation of A as a linear combination of the basis of $\mathbb{R}^{n\times n}$ in part (a).

(c) Define the linear map $\Phi: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ by

$$\Phi(M) = AM - MA.$$

The null space of Φ is clearly the subspace of $\mathbb{R}^{n\times n}$ consisting of all matrices $M\in\mathbb{R}^{n\times n}$ that commute with A, i.e., for which AM=MA. Show that the dimension of the null space of Φ is

$$\sum_{\lambda \in \sigma(A)} m_{\lambda}^2,$$

i.e., the sum of the squares of the multiplicities of the distinct eigenvalues of A. (Hint: Express M in terms of the basis of $\mathbb{R}^{n\times n}$ in part (a).)

- 2. Find all distributions $u \in \mathcal{D}'(\mathbb{R}^2)$ of order at most 2 for which $(x^2 + y^2)u = 0$.
- 3. Suppose $\alpha(t)$ is a continuous complex-valued function of $t \geq 0$. Let r(t) be a solution of the initial value problem

$$\frac{dr}{dt} = ir + \alpha - \overline{\alpha}r^2 \qquad (t \ge 0),$$

$$r(0) = 0,$$

and assume that r(t) is defined for all $t \geq 0$.

(a) Derive an expression for $\frac{d}{dt}\left(|r|^2\right) = r\frac{d\overline{r}}{dt} + \frac{dr}{dt}\overline{r}$, and show that whenever $|r(t)| \le 1$,

$$\frac{d}{dt} \left(1 - |r(t)|^2 \right) \ge -2 |\alpha(t)| |r(t)| \left(1 - |r(t)|^2 \right).$$

(b) Suppose in addition that

$$\int_{0}^{\infty} |\alpha(t)| dt < \infty.$$

Show that |r(t)| < 1 for all t > 0.

4. Let $A: \mathbb{R} \to \mathbb{R}^{n \times n}$ be a continuous matrix-valued function that is periodic of period p > 0, i.e., A(t+p) = A(t). Let $Y: \mathbb{R} \to \mathbb{R}^{n \times n}$ be a matrix-valued solution of the initial value problem

$$Y'(t) = A(t)Y(t) (t \in \mathbb{R}),$$

 $Y(0) = C,$

where $C \in \mathbb{R}^{n \times n}$ is a given constant matrix.

- (a) Show that if C is invertible, then Y(t) is also invertible for all $t \in \mathbb{R}$.
- (b) Suppose C is invertible. Show that the matrix

$$\Omega = Y(t)^{-1}Y(t+p)$$

is independent of t.

- (c) Show that the eigenvalues of Ω are independent of the choice of the invertible matrix C.
- 5. Let $B_1 = \{(x,y) : x_1^2 + x_2^2 \le 1\}$ be the unit ball in \mathbb{R}^2 , and $S^1 = \{(\xi_1, \xi_2) : \xi_1^2 + \xi_2^2 = 1\}$ be the unit circle in \mathbb{R}^2 . Define the operator $H: L^2(B_1) \to L^2(S^1)$ by

$$Hf = \left. \widehat{f}(\xi) \right|_{|\xi|=1},$$

i.e., Hf is the restriction of the Fourier transform of f to the unit circle S^1 .

(a) Show that $L^2(B_1) \subset L^1(\mathbb{R}^2)$, and conclude that the restriction of

$$\widehat{f}(\xi) = \int_{\mathbb{R}^2} e^{-ix\cdot\xi} f(x) dx$$

to S^1 is well-defined for $f \in L^2(B_1)$.

(b) Using the correspondence $(\cos \theta, \sin \theta) \leftrightarrow \theta$ to identify S^1 with the interval $(-\pi, \pi]$, express H as an integral operator, i.e., find its kernel $h(\theta, x)$ such that

$$[Hf](\theta) = \int_{|x| \le 1} h(\theta, x) f(x) dx \quad (-\pi < \theta \le \pi).$$

- (c) Show that $H: L^2(B_1) \to L^2(S^1)$ is a compact operator.
- (d) Using the inner product $(f,g) = \int_{|x| \le 1} f(x) \overline{g(x)} dx$ on $L^2(B_1)$ and the inner product $(\phi,\psi) = \int_{-\pi}^{\pi} \phi(\theta) \overline{\psi(\theta)} d\theta$ on $L^2(S^1)$, express the Hilbert-space adjoint H^* of H

$$H^*: L^2(S^1) \to L^2(B_1)$$

as an integral operator, i.e., find its kernel $k(x, \theta)$ such that

$$[H^*\phi](x) = \int_{-\pi}^{\pi} k(x,\theta)\phi(\theta) d\theta \quad (|x| \le 1).$$

- 6. Let $q \in L^1(\mathbb{R})$. Define the operator T by $[Tf](x) = \int_{\mathbb{R}} q(x-y)f(y) dy$.
 - (a) Show that T maps $L^2(\mathbb{R})$ into $L^2(\mathbb{R})$.
 - (b) Show that $T:L^2(\mathbb{R})\to L^2(\mathbb{R})$ is not a compact operator unless q=0 a.e.
- 7. Let V_1 and V_2 be subspaces of \mathbb{R}^n which satisfy $\mathbb{R}^n = V_1 \oplus V_2$, but are not orthogonal (in the usual inner product on \mathbb{R}^n). Let Q denote the projection of \mathbb{R}^n onto V_1 along V_2 . Let P_1 be the *orthogonal* projection of \mathbb{R}^n onto V_1 (caution: $P_1 \neq Q$), and let P_2 be the *orthogonal* projection of \mathbb{R}^n onto V_2 .
 - (a) Show that $I P_1 P_2$ is invertible. (Hint: Show that $x = P_1 P_2 x$ implies that x = 0.)
 - (b) Show that $P_1(I P_2) = P_1(I P_1P_2)$.
 - (c) Show that $Q = (I P_1 P_2)^{-1} P_1 (I P_2)$.
- 8. In $\mathbb{R}^2 \setminus \{(0,0)\}$, let θ denote the branch of the polar-coordinate angle (i.e., $\tan \theta = y/x$) for which $-\pi < \theta \le \pi$.

Clearly $\theta(x,y) \in L^1_{loc}(\mathbb{R}^2)$, so we can view θ as a distribution on \mathbb{R}^2 . Show that the Laplacian $\Delta \theta \equiv \frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2}$ of θ (in the sense of distributions) satisfies

$$\Delta\theta = 2\pi \frac{\partial v}{\partial y},$$

where $v \in \mathcal{D}'(\mathbb{R}^2)$ is the distribution

$$\langle v, \phi \rangle = \int_{-\infty}^{0} \phi(x, 0) dx \qquad (\phi \in \mathcal{D}(\mathbb{R}^{2})).$$