LINEAR ANALYSIS PRELIM EXAM

Autumn 2008

• There are 8 questions. You are guaranteed to pass the exam if you give complete, correct answers to at least 4 of the questions.

• If you cannot answer a part of a question, you may assume the result and proceed to a subsequent part.

Notation
• $\mathbb{R}^{n \times m}$ denotes the $n \times m$ real matrices.
• \mathbb{M}_n denotes the $n \times n$ complex matrices.
• $\text{GL}_n(\mathbb{C}) \subset \mathbb{M}_n$ denotes the subset of nonsingular matrices.
• \mathbb{H}_n denotes the Hermitian symmetric matrices.
• $H \in \mathbb{H}_n$ is said to be positive definite ($H > 0$) if $x^T H x > 0$ for all $x \in \mathbb{C}^n$ with $x \neq 0$.
• $H \in \mathbb{H}_n$ is said to be positive semi–definite ($H \geq 0$) if $x^T H x \geq 0$ for all $x \in \mathbb{C}^n$.
• \mathbb{S}_n denotes the real symmetric matrices
• $H \in \mathbb{S}_n$ is said to be positive definite ($H > 0$) if $x^T H x > 0$ for all $x \in \mathbb{R}^n$ with $x \neq 0$.
• $H \in \mathbb{S}_n$ is said to be positive semi–definite ($H \geq 0$) if $x^T H x \geq 0$ for all $x \in \mathbb{R}^n$.
• The singular values of a matrix A are the eigenvalues of the matrix $\sqrt{A^* A}$.
• $\mathcal{S}'(\mathbb{R}^n)$ is the class of tempered distributions.
1. Given $A \in \mathbb{M}_n$, define the spectral abscissa of A, $\alpha(A)$, to be the maximum of the real parts of the spectrum of A,

$$
\alpha(A) = \max \{ \text{Re}\lambda \mid \det(A - \lambda I) = 0 \},
$$

where $\text{Re}(\lambda)$ is the real part of λ, and define the Hermitian part of A to be the Hermitian symmetric matrix

$$
\mathcal{H}(A) = \frac{1}{2}(A + A^*) .
$$

(a) Show that $\alpha(A) \leq \alpha(\mathcal{H}(A))$. \emph{Hint: Rayleigh Quotients may help.}
(b) For every $A \in \mathbb{M}_n$ and $\epsilon > 0$, show that there exists a unitary matrix Q and a real diagonal matrix T such that $\hat{A} = T^{-1}Q^*AQ$ is upper triangular with all off diagonal elements having magnitude less than ϵ.
(c) Show that

$$
\alpha(A) = \inf_{X \in \text{GL}_n(\mathbb{C})} \alpha(\mathcal{H}(X^{-1}AX)).
$$

You may use, without proof, the fact that the spectrum depends continuously on the matrix elements.

2. Let r, n and m be positive integers satisfying $1 \leq r \leq \min\{n, m\}$.
(a) Let $\{v^1, \ldots, v^r\}$ and $\{w^1, \ldots, w^r\}$ be orthonormal sets of vectors in \mathbb{C}^n and \mathbb{C}^m, respectively. Show that

$$
\left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} v^j \\ w^j \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} -v^j \\ w^j \end{pmatrix} \mid j = 1, 2, \ldots, r \right\}
$$

is and orthonormal set of vectors in \mathbb{C}^{n+m}.
(b) Let $A \in \mathbb{M}_n$. Show that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ are the n singular values of A if and only if $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0 \geq -\sigma_n \geq \cdots \geq -\sigma_2 \geq -\sigma_1$ are the $2n$ eigenvalues of the symmetric matrix

$$
\begin{bmatrix}
0 & A \\
A^* & 0
\end{bmatrix} .
$$

3. Let $H \in \mathcal{S}_n$, $u \in \mathbb{R}^n$, and $\alpha \in \mathbb{R}$. Consider the block matrix

$$
\hat{H} := \begin{bmatrix}
H & u \\
u^T & \alpha
\end{bmatrix} .
$$

(a) Show that \hat{H} is positive definite if and only if H is positive definite and $\alpha > u^T H^{-1} u$.
(b) Show that \hat{H} is positive semi–definite if and only if H is positive semi–definite and there exists a vector $z \in \mathbb{R}^n$ such that $u = Hz$ and $\alpha \geq z^T Hz$.

4. Let \(H \) be a real Hilbert space and \(b(u,v) \) a bilinear form satisfying:
\[
\sup_{\|v\|=1} \sup_{\|u\|=1} b(u,v) \leq C_0 \quad (a)
\]
\[
\inf_{\|v\|=1} \sup_{\|u\|=1} b(u,v) \geq C_1 \quad (b)
\]
\[
\inf_{\|u\|=1} \sup_{\|v\|=1} b(u,v) \geq C_2 \quad (c)
\]
where \(C_0, C_1, \) and \(C_2 \) are positive constants. Prove that there exists a unique bounded linear map \(B \), with bounded inverse, mapping \(H \) to itself, such that
\[
b(u,v) = (u, Bv)
\]
where \((f,g)\) denotes the Hilbert space inner product of \(f \) and \(g \).

5. Let \(A: \mathbb{R} \to \mathbb{R}^{n \times n} \), \(B: \mathbb{R} \to \mathbb{R}^{n \times m} \) and \(C: \mathbb{R} \to \mathbb{R}^{n \times k} \) be continuous matrix valued mappings and \(u: \mathbb{R} \to \mathbb{R}^m \) a continuous vector valued function. An input-output system \(S \) is an initial value problem
\[
\dot{x} = A(t)x + B(t)u
\]
\[
x(0) = 0
\]
together with an output relation
\[
v = C(t)x.
\]
The system \(S \) is said to be I-O stable if there is a constant \(K > 0 \) such that
\[
\sup_{t \geq 0} |v(t)| \leq K \sup_{t \geq 0} |u(t)|
\]
(a) Let \(\Phi \) be a fundamental matrix normalized at \(t_0 = 0 \) for the system \(\dot{x} = A(t)x \), and define \(h: \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{k \times m} \) by
\[
h(t,s) = C(t)\Phi(t)\Phi^{-1}(s)B(s).
\]
Show that, if there exists \(M > 0 \) such that
\[
\int_0^t |h(t,s)| \, ds \leq M \quad \text{for all } \ t \geq 0.
\]
then the system \(S \) is I-O stable.

(b) Next suppose that \(A, B, \) and \(C \) are constant matrices. Show that, if all of the eigenvalues of \(A \) have negative real part, then the system \(S \) is I-O stable.

(c) Finally, assume that \(A, B, \) and \(C \) are constant and also that \(B \) and \(C \) are invertible. In this case, show that, the system \(S \) is I-O stable if and only if all of the eigenvalues of \(A \) have negative real part.
6. Let \(f(x) \) be a continuous bounded (i.e. there is a constant \(M \) such that \(|f(x)| \leq M \forall x \in \mathbb{R} \)) function on the real line. Prove that there is a unique bounded \(C^2 \) solution \(u \) of the differential equation
\[
\left(\frac{d}{dx} - 1 \right) \left(\frac{d}{dx} + 2 \right) u = f
\]
Writing an explicit formula for \(u \) as an integral or a sum of integrals will help to show that \(u \) is bounded.

7. Let \(q(x) \) be a continuous real-valued function on the interval \([0, 1]\). Consider the Sturm-Liouville problem
\[
u'' + q(x)u = \lambda u
\]
\[
u'(0) = u(0) \quad u(1) = 0
\]
Show that all eigenvalues are real, simple (i.e. if two eigenfunctions have the same eigenvalue, then one is a constant multiple of the other), and satisfy
\[
\lambda \leq \max_{x \in [0,1]} q(x)
\]
Hint: Prove and use the inequality \(|u(0)|^2 \leq \int_0^1 |u'(t)|^2 dt \)

8. a) Show that, for any tempered distribution \(\mu \in S'(\mathbb{R}^n) \), there is a unique tempered distribution \(\omega \in S'(\mathbb{R}^n) \) that solves
\[
\Delta \omega - \omega = \mu
\]
b) If \(\mu \) is the distribution
\[
\langle \mu, \phi \rangle = \int_{-\infty}^{\infty} \phi(0, y)dy
\]
show that \(\omega \) is a function, defined at every point \((x, y) \in \mathbb{R}^2\) and bounded by a constant.
c) For each \(0 \leq \theta < 2\pi \), calculate
\[
\lim_{r \to \infty} \omega(r \cos(\theta), r \sin(\theta))
\]