LINEAR ANALYSIS PRELIM EXAM

Autumn 2008

- There are 8 questions. You are guaranteed to pass the exam if you give complete, correct answers to at least 4 of the questions.
- If you cannot answer a part of a question, you may assume the result and proceed to a subsequent part.

Notation

- $\mathbb{R}^{n \times m}$ denotes the $n \times m$ real matrices.
- \mathbb{M}_{n} denotes the $n \times n$ complex matrices.
- $\mathrm{GL}_{n}(\mathbb{C}) \subset \mathbb{M}_{n}$ denotes the subset of nonsingular matrices.
- \mathbb{H}_{n} denotes the Hermitian symmetric matrices.
- $H \in \mathbb{H}_{n}$ is said to be positive definite $(H>0)$ if $x^{T} H x>0$ for all $x \in \mathbb{C}^{n}$ with $x \neq 0$.
- $H \in \mathbb{H}_{n}$ is said to be positive semi-definite $(H \geq 0)$ if $x^{T} H x \geq 0$ for all $x \in \mathbb{C}^{n}$.
- \mathbb{S}_{n} denotes the real symmetric matrices
- $H \in \mathbb{S}_{n}$ is said to be positive definite $(H>0)$ if $x^{T} H x>0$ for all $x \in \mathbb{R}^{n}$ with $x \neq 0$.
- $H \in \mathbb{S}_{n}$ is said to be positive semi-definite $(H \geq 0)$ if $x^{T} H x \geq 0$ for all $x \in \mathbb{R}^{n}$.
- The singular values of a matrix A are the eigenvalues of the matrix $\sqrt{A^{*} A}$.
- $S^{\prime}\left(\mathbb{R}^{n}\right)$ is the class of tempered distributions.

1. Given $A \in \mathbb{M}_{n}$, define the spectral abscissa of $A, \alpha(A)$, to be the maximum of the real parts of the spectrum of A,

$$
\alpha(A)=\max \{\operatorname{Re} \lambda \mid \operatorname{det}(A-\lambda I)=0\},
$$

where $\operatorname{Re}(\lambda)$ is the real part of λ, and define the Hermitian part of A to be the Hermitian symmetric matrix

$$
\mathcal{H}(A)=\frac{1}{2}\left(A+A^{*}\right) .
$$

(a) Show that $\alpha(A) \leq \alpha(\mathcal{H}(A))$. Hint: Rayleigh Quotients may help.
(b) For every $A \in \mathbb{M}_{n}$ and $\epsilon>0$, show that there exists a unitary matrix Q and a real diagonal matrix T such that $\hat{A}=T^{-1} Q^{*} A Q T$ is upper triangular with all off diagonal elements having magnitude less than ϵ.
(c) Show that

$$
\alpha(A)=\inf _{X \in \mathrm{GL}_{n}(\mathbb{C})} \alpha\left(\mathcal{H}\left(X^{-1} A X\right)\right)
$$

You may use, without proof, the fact that the spectrum depends continuously on the matrix elements.
2. Let r, n and m be positive integers satisfying $1 \leq r \leq \min \{n, m\}$.
(a) Let $\left\{v^{1}, \ldots, v^{r}\right\}$ and $\left\{w^{1}, \ldots, w^{r}\right\}$ be orthonormal sets of vectors in \mathbb{C}^{n} and \mathbb{C}^{m}, respectively. Show that

$$
\left\{\frac{1}{\sqrt{2}}\binom{v^{j}}{w^{j}}, \left.\frac{1}{\sqrt{2}}\binom{-v^{j}}{w^{j}} \right\rvert\, j=1,2, \ldots, r\right\}
$$

is and orthonormal set of vectors in \mathbb{C}^{n+m}.
(b) Let $A \in \mathbb{M}_{n}$. Show that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ are the n singular values of A if and only if $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0 \geq-\sigma_{n} \geq \cdots \geq-\sigma_{2} \geq-\sigma_{1}$ are the $2 n$ eigenvalues of the symmetric matrix

$$
\left[\begin{array}{cc}
0 & A \\
A^{*} & 0
\end{array}\right] .
$$

3. Let $H \in \mathcal{S}_{n}, u \in \mathbb{R}^{n}$, and $\alpha \in \mathbb{R}$. Consider the block matrix

$$
\widehat{H}:=\left[\begin{array}{cc}
H & u \\
u^{T} & \alpha
\end{array}\right] .
$$

(a) Show that \widehat{H} is positive definite if and only if H is positive definite and $\alpha>u^{T} H^{-1} u$.
(b) Show that \widehat{H} is positive semi-definite if and only if H is positive semidefinite and there exists a vector $z \in \mathbb{R}^{n}$ such that $u=H z$ and $\alpha \geq z^{T} H z$.
4. Let H be a real Hilbert space and $b(u, v)$ a bilinear form satisfying:

$$
\begin{align*}
& \sup _{\|v\|=1} \sup _{\|u\|=1} b(u, v) \leq C_{0} \tag{a}\\
& \inf _{\|v\|=1} \sup _{\|u\|=1} b(u, v) \geq C_{1} \tag{b}\\
& \inf _{\|u\|=1} \sup _{\|v\|=1} b(u, v) \geq C_{2} \tag{c}
\end{align*}
$$

where C_{0}, C_{1}, and C_{2} are positive constants. Prove that there exists a unique bounded linear map B, with bounded inverse, mapping H to itself, such that

$$
b(u, v)=(u, B v)
$$

where (f, g) denotes the Hilbert space inner product of f and g.
5. Let $A: \mathbb{R} \rightarrow \mathbb{R}^{n \times n}, B: \mathbb{R} \rightarrow \mathbb{R}^{n \times m}$ and $C: \mathbb{R} \rightarrow \mathbb{R}^{n \times k}$ be continuous matrix valued mappings and $u: \mathbb{R} \rightarrow \mathbb{R}^{m}$ a continuous vector valued function. An input-output system \mathcal{S} is an initial value problem

$$
\begin{aligned}
\dot{x} & =A(t) x+B(t) u \\
x(0) & =0
\end{aligned}
$$

together with an ouput relation

$$
v=C(t) x
$$

The system \mathcal{S} is said to be $I-O$ stable if there is a constant $K>0$ such that

$$
\sup _{t \geq 0}|v(t)| \leq K \sup _{t \geq 0}|u(t)|
$$

(a) Let Φ be a fundamental matrix normalized at $t_{0}=0$ for the system $\dot{x}=$ $A(t) x$, and define $h: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}^{k \times m}$ by

$$
h(t, s)=C(t) \Phi(t) \Phi^{-1}(s) B(s) .
$$

Show that, if there exists $M>0$ such that

$$
\int_{0}^{t}|h(t, s)| d s \leq M \quad \text { for all } t \geq 0
$$

then the system \mathcal{S} is I-O stable .
(b) Next suppose that A, B, and C are constant matrices. Show that, if all of the eigenvalues of A have negative real part, then the system \mathcal{S} is I-O stable
(c) Finally, assume that A, B, and C are constant and also that B and C are invertible. In this case, show that, the system \mathcal{S} is I-O stable if and only if all of the eigenvalues of A have negative real part.
6. Let $f(x)$ be a continuous bounded (i.e. there is a constant M such that $|f(x)| \leq$ $M \forall x \in \mathbb{R}$) function on the real line . Prove that there is a unique bounded C^{2} solution u of the differential equation

$$
\left(\frac{d}{d x}-1\right)\left(\frac{d}{d x}+2\right) u=f
$$

Writing an explicit formula for u as an integral or a sum of integrals will help to show that u is bounded.
7. Let $q(x)$ be a continuous real-valued function on the interval $[0,1]$. Consider the Sturm-Liouville problem

$$
\begin{gathered}
u^{\prime \prime}+q(x) u=\lambda u \\
u^{\prime}(0)=u(0) \quad u(1)=0
\end{gathered}
$$

Show that all eigenvalues are real, simple (i.e. if two eigenfunctions have the same eigenvalue, then one is a constant multiple of the other), and satisfy

$$
\lambda \leq \max _{x \in[0,1]} q(x)
$$

Hint: Prove and use the inequality $|u(0)|^{2} \leq \int_{0}^{1}\left|u^{\prime}(t)\right|^{2} d t$
8. a) Show that, for any tempered distribution $\mu \in S^{\prime}\left(\mathbb{R}^{n}\right)$, there is a unique tempered distribution $\omega \in S^{\prime}\left(\mathbb{R}^{n}\right)$ that solves

$$
\Delta \omega-\omega=\mu
$$

b) If μ is the distribution

$$
\langle\mu, \phi\rangle=\int_{-\infty}^{\infty} \phi(0, y) d y
$$

show that ω is a function, defined at every point $(x, y) \in \mathbb{R}^{2}$ and bounded by a constant.
c) For each $0 \leq \theta<2 \pi$, calculate

$$
\lim _{r \rightarrow \infty} \omega(r \cos (\theta), r \sin (\theta))
$$

