
Linear Analysis Prelim Exam

Autumn 2010

Do as many of the eight problems as you can. Four completely correct solutions will be a
pass; a few complete solutions will count more than many partial solutions. Always carefully
justify your answers. If you skip a step or omit some details in a proof, point out the gap
and, if possible, indicate what would be required to fill it in.

Notation: For a vector v ∈ Rn or Cn, |v| denotes the Euclidean norm
(∑n

j=1 |vj |2
)1/2

.

1. Find all solutions u ∈ D′(R) to the equation x ∂xu = 1.

Be careful to show that your solutions do in fact solve the equation, and that they
represent all distribution solutions to the equation.

2. For this problem, V = {v1, v2, . . . } is assumed to be a countable collection of orthonor-
mal vectors in a complex Hilbert space H with inner product 〈 · , · 〉 and norm ‖ · ‖.
The collection V is said to be complete if the only vector w ∈ H that is orthogonal to
all vj ∈ V is the 0 vector. Show that each of the following conditions on V is equivalent
to V being complete.

a) For every w ∈ H, the following holds

‖w‖2 =
∞∑
j=1

∣∣〈w, vj〉∣∣2
b) If w ∈ H, and ε > 0, there exists v ∈ span(V) such that ‖v − w‖ < ε.

3. Let A be the matrix

A =

 −1 −1 1
1 −1 −1
2 0 −2


a) Find the Jordan decomposition of A.

b) Find a fundamental matrix for the initial value problem x′ = Ax, x(0) = x0 .

c) Let f : R → R3 be a continuous vector-valued function with
∫∞
0 |f(t)| dt <∞.

Let x(t) be the solution to the following initial value problem for t ≥ 0 ,

x′(t) = Ax(t) + f(t) , x(0) = 0 .

Show there exists a constant vector v ∈ R3 such that |x(t)− v| → 0 as t→ +∞,
and calculate v in terms of f . (Your answer is allowed to involve the inverse of a
matrix.)



4. Given sequences of real numbers a1, a2, a3 . . . and b1, b2, b3, . . . , for each n ≥ 1 define
the n× n real tridiagonal symmetric matrix Tn as follows:

Tn =


an bn−1

bn−1 an−1
. . .

. . . . . . b1
b1 a1


a) Let pn(x) be the characteristic polynomial of Tn. Find an expression for pn(x) in

terms of an, bn−1, pn−1(x) and pn−2(x).

b) The only eigenvalue of T1 is a1. Show that if b1 6= 0, then the two eigenvalues
λ1 ≥ λ2 of T2 have the property that λ1 > a1 > λ2.

c) Assume that bi 6= 0 for all 1 ≤ i ≤ n − 1. Let λ1 ≥ λ2 ≥ . . . ≥ λn be the
eigenvalues of Tn, and let µ1 ≥ µ2 ≥ . . . ≥ µn−1 be the eigenvalues of Tn−1. Use
induction and part (a) to show that the µ’s and λ’s interlace, i.e. λ1 > µ1 > λ2 >
. . . > λn−1 > µn−1 > λn .

5. Show that there is a unique (up to equality almost everywhere) function g ∈ L2([−π, π])
which minimizes the quantity ∫ π

−π

∣∣ et − g(t)
∣∣2 dt

subject to the conditions{
ĝ(0) = 1 ,
ĝ(−k) = −ĝ(k) for all integers k 6= 0 ,

and explicitly identify the minimizing function g(t). Here,

ĝ(k) =
∫ π

−π
e−ikt g(t) dt .

6. a) Given an m×n complex matrix A, where m ≥ n, and an integer k ≤ n, calculate
the value

inf
rank(B)≤k

||A−B|| ,

where the norm || · || denotes the spectral norm,

||A|| = sup
|x|=1

|Ax| ,

and the infimum is taken over complex m×n matrices B of rank at most k. The
answer should come as a function of well-known values associated with A.

b) What conditions must one impose on the matrix A so that the minimizer matrix
B you found in part (a) (for a fixed k) is unique?



7. Let f(x) be a C∞ function on the real line, which is periodic with period 2π. Use
Fourier series to express the solution to the initial value problem{

ut(x, t) = iuxx(x, t) , x ∈ [0, 2π] , t ≥ 0 ,
u(x, 0) = f(x) , x ∈ [0, 2π] ,

with periodic boundary conditions{
u(0, t) = u(2π, t)
ux(0, t) = ux(2π, t)

t ≥ 0 .

a) Show that, for all t ≥ 0,∫ 2π

0
|u(x, t)|2 dx =

∫ 2π

0
|f(x)|2 dx .

b) Show that

lim
t→0+

∫ 2π

0

∣∣u(x, t)− f(x)
∣∣2 dx = 0 .

8. Given the initial value problem y′(t) = f(y(t)), 0 ≤ t ≤ T , y(0) = y0, where f is C∞
in y, we investigate numerical methods of the form

yn+1 = yn + h · (Ak1 +Bk2) , (1)

where k1 = f(yn) and k2 = f(yn + hk1), for n = 0 through N − 1, and h = T/N .

a) Find the constants A and B such that the method is accurate of as high an order
as possible.

b) Consider the case of a stiff equation, i.e. y′ = ky, y(0) = y0, with k < 0 a negative
real constant, over the interval [0,∞). We define the sequence yn recursively by
(1), with h being the stepsize parameter.
For general h > 0, determine an explicit expression for yn using the values of A
and B found in part (a). Find explicitly (in terms of k) the set of values of h for
which the sequence {yn} stays bounded as n→∞.


