Linear Analysis Prelim Exam

Autumn 2010

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.
Notation: For a vector $v \in \mathbb{R}^{n}$ or $\mathbb{C}^{n},|v|$ denotes the Euclidean norm $\left(\sum_{j=1}^{n}\left|v_{j}\right|^{2}\right)^{1 / 2}$.

1. Find all solutions $u \in \mathcal{D}^{\prime}(\mathbb{R})$ to the equation $\quad x \partial_{x} u=1$.

Be careful to show that your solutions do in fact solve the equation, and that they represent all distribution solutions to the equation.
2. For this problem, $\mathcal{V}=\left\{v_{1}, v_{2}, \ldots\right\}$ is assumed to be a countable collection of orthonormal vectors in a complex Hilbert space \mathcal{H} with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$.

The collection \mathcal{V} is said to be complete if the only vector $w \in \mathcal{H}$ that is orthogonal to all $v_{j} \in \mathcal{V}$ is the 0 vector. Show that each of the following conditions on \mathcal{V} is equivalent to \mathcal{V} being complete.
a) For every $w \in \mathcal{H}$, the following holds

$$
\|w\|^{2}=\sum_{j=1}^{\infty}\left|\left\langle w, v_{j}\right\rangle\right|^{2}
$$

b) If $w \in \mathcal{H}$, and $\epsilon>0$, there exists $v \in \operatorname{span}(\mathcal{V})$ such that $\|v-w\|<\epsilon$.
3. Let A be the matrix

$$
A=\left[\begin{array}{rrr}
-1 & -1 & 1 \\
1 & -1 & -1 \\
2 & 0 & -2
\end{array}\right]
$$

a) Find the Jordan decomposition of A.
b) Find a fundamental matrix for the initial value problem $x^{\prime}=A x, x(0)=x_{0}$.
c) Let $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a continuous vector-valued function with $\int_{0}^{\infty}|f(t)| d t<\infty$. Let $x(t)$ be the solution to the following initial value problem for $t \geq 0$,

$$
x^{\prime}(t)=A x(t)+f(t), \quad x(0)=0
$$

Show there exists a constant vector $v \in \mathbb{R}^{3}$ such that $|x(t)-v| \rightarrow 0$ as $t \rightarrow+\infty$, and calculate v in terms of f. (Your answer is allowed to involve the inverse of a matrix.)
4. Given sequences of real numbers $a_{1}, a_{2}, a_{3} \ldots$ and $b_{1}, b_{2}, b_{3}, \ldots$, for each $n \geq 1$ define the $n \times n$ real tridiagonal symmetric matrix T_{n} as follows:

$$
T_{n}=\left[\begin{array}{cccc}
a_{n} & b_{n-1} & & \\
b_{n-1} & a_{n-1} & \ddots & \\
& \ddots & \ddots & b_{1} \\
& & b_{1} & a_{1}
\end{array}\right]
$$

a) Let $p_{n}(x)$ be the characteristic polynomial of T_{n}. Find an expression for $p_{n}(x)$ in terms of $a_{n}, b_{n-1}, p_{n-1}(x)$ and $p_{n-2}(x)$.
b) The only eigenvalue of T_{1} is a_{1}. Show that if $b_{1} \neq 0$, then the two eigenvalues $\lambda_{1} \geq \lambda_{2}$ of T_{2} have the property that $\lambda_{1}>a_{1}>\lambda_{2}$.
c) Assume that $b_{i} \neq 0$ for all $1 \leq i \leq n-1$. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be the eigenvalues of T_{n}, and let $\mu_{1} \geq \mu_{2} \geq \ldots \geq \mu_{n-1}$ be the eigenvalues of T_{n-1}. Use induction and part (a) to show that the μ 's and λ 's interlace, i.e. $\lambda_{1}>\mu_{1}>\lambda_{2}>$ $\ldots>\lambda_{n-1}>\mu_{n-1}>\lambda_{n}$.
5. Show that there is a unique (up to equality almost everywhere) function $g \in L^{2}([-\pi, \pi])$ which minimizes the quantity

$$
\int_{-\pi}^{\pi}\left|e^{t}-g(t)\right|^{2} d t
$$

subject to the conditions

$$
\left\{\begin{array}{l}
\widehat{g}(0)=1 \\
\widehat{g}(-k)=-\widehat{g}(k) \text { for all integers } k \neq 0
\end{array}\right.
$$

and explicitly identify the minimizing function $g(t)$. Here,

$$
\widehat{g}(k)=\int_{-\pi}^{\pi} e^{-i k t} g(t) d t
$$

6. a) Given an $m \times n$ complex matrix A, where $m \geq n$, and an integer $k \leq n$, calculate the value

$$
\inf _{\operatorname{rank}(B) \leq k}\|A-B\|
$$

where the norm $\|\cdot\|$ denotes the spectral norm,

$$
\|A\|=\sup _{|x|=1}|A x|
$$

and the infimum is taken over complex $m \times n$ matrices B of rank at most k. The answer should come as a function of well-known values associated with A.
b) What conditions must one impose on the matrix A so that the minimizer matrix B you found in part (a) (for a fixed k) is unique?
7. Let $f(x)$ be a C^{∞} function on the real line, which is periodic with period 2π. Use Fourier series to express the solution to the initial value problem

$$
\begin{cases}u_{t}(x, t)=i u_{x x}(x, t), & x \in[0,2 \pi], \quad t \geq 0 \\ u(x, 0)=f(x), & x \in[0,2 \pi]\end{cases}
$$

with periodic boundary conditions

$$
\left\{\begin{array}{l}
u(0, t)=u(2 \pi, t) \\
u_{x}(0, t)=u_{x}(2 \pi, t)
\end{array} \quad t \geq 0\right.
$$

a) Show that, for all $t \geq 0$,

$$
\int_{0}^{2 \pi}|u(x, t)|^{2} d x=\int_{0}^{2 \pi}|f(x)|^{2} d x
$$

b) Show that

$$
\lim _{t \rightarrow 0+} \int_{0}^{2 \pi}|u(x, t)-f(x)|^{2} d x=0
$$

8. Given the initial value problem $y^{\prime}(t)=f(y(t)), 0 \leq t \leq T, y(0)=y_{0}$, where f is \mathcal{C}^{∞} in y, we investigate numerical methods of the form

$$
\begin{equation*}
y_{n+1}=y_{n}+h \cdot\left(A k_{1}+B k_{2}\right) \tag{1}
\end{equation*}
$$

where $k_{1}=f\left(y_{n}\right)$ and $k_{2}=f\left(y_{n}+h k_{1}\right)$, for $n=0$ through $N-1$, and $h=T / N$.
a) Find the constants A and B such that the method is accurate of as high an order as possible.
b) Consider the case of a stiff equation, i.e. $y^{\prime}=k y, y(0)=y_{0}$, with $k<0$ a negative real constant, over the interval $[0, \infty)$. We define the sequence y_{n} recursively by (1), with h being the stepsize parameter.

For general $h>0$, determine an explicit expression for y_{n} using the values of A and B found in part (a). Find explicitly (in terms of k) the set of values of h for which the sequence $\left\{y_{n}\right\}$ stays bounded as $n \rightarrow \infty$.

