LINEAR ANALYSIS PRELIM EXAM

Autumn 2012

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

1. (a) Prove the following variant of the Courant-Fischer min-max principle for singular values: Given an $m \times n$ complex matrix $A, m \geq n$,

$$
\begin{aligned}
\sigma_{k}(A) & =\min _{w_{1}, \ldots, w_{k-1} \in \mathbb{C}^{n}} \quad \max _{x \in \mathbb{C}^{n}} \\
\|x\|_{2}=1 & \|A x\|_{2} \\
=\max _{w_{1}, \ldots, w_{n-k} \in \mathbb{C}^{n}} & \min _{\substack{x \in \mathbb{C}^{n} \\
\\
x \perp w_{1}, \ldots, x \perp w_{k-1}}}\|x\|_{2}=1 \\
& \| \perp w_{1}, \ldots, x \perp w_{n-k}
\end{aligned}
$$

(b) Given an $m \times n$ complex matrix $A, m \geq n$, let $1 \leq k \leq n$, and let A_{r} be a matrix obtained from A by deleting r columns (or rows). Use part a) to prove that for all k and r,

$$
\sigma_{k}(A) \geq \sigma_{k}\left(A_{r}\right) \geq \sigma_{k+r}(A)
$$

Here $\sigma_{i}(X)$ is the i th singular value of the matrix X, and $\|x\|_{2}$ is the twonorm of X, i.e., $\|x\|_{2}^{2}=x^{H} x$ for $x \in \mathbb{C}^{n}$. Finally, X^{H} represents the Hermitian transpose of X.
2. Given a complex $n \times n$ matrix A, the Schur decomposition of A takes the form $A=U T U^{H}$, where U is unitary and T is upper triangular $(T(i, j)=0$ for all $n \geq i>j \geq 1$). Here X^{H} represents the Hermitian transpose of X. The diagonal of T contains all eigenvalues of A, with multiplicities, and it is easy to see that the decomposition is not unique.

Show that, if A and B are $n \times n$ complex matrices such that $A B=B A$ and A has all distinct eigenvalues, then there exists an $n \times n$ unitary matrix U such that $U^{H} A U$ and $U^{H} B U$ are both upper triangular.
3. (a) State and prove the Cauchy-Peano existence theorem for ordinary differential equations.
(b) Is uniqueness true in the above existence theorem? Justify your answer.
4. Consider the following multistep method

$$
y_{n+3}=y_{n+2}+h\left(\beta_{2} f\left(t_{n+2}, y_{n+2}\right)+\beta_{1} f\left(t_{n+1}, y_{n+1}\right)+\beta_{0} f\left(t_{n}, y_{n}\right)\right)
$$

for numerically approximating the initial values problem $y^{\prime}=f(t, y), y(0)=y_{0}$, $y(h)=y_{h}$, and $y(2 h)=y_{2 h}$ with stepsize h on the interval $[0, T]$. Here $t_{k}=k h$ for $0 \leq k h \leq T$ and y_{k} represents the approximation to $y\left(t_{k}\right)$.

Assume that y, f are \mathbb{R}^{n}-valued, f is \mathcal{C}^{∞} in t and y, and $y_{h}, y_{2 h} \rightarrow y_{0}$ as $h \rightarrow 0$.
Recall that a linear multistep method given by

$$
\sum_{i=0}^{k} \alpha_{i} y_{n+i}=h\left(\sum_{i=0}^{k} \beta_{i} f\left(t_{n+i}, y_{n+i}\right)\right)
$$

is zero-stable if the characteristic polynomial $p(r)=\sum_{i=0}^{k} \alpha_{i} r^{i}$ has all roots inside or on the unit circle, and those that are on the unit circle are simple.
(a) Find the coefficients $\beta_{0}, \beta_{1}, \beta_{2}$ such that the method is of order 3. (This is known as the "order three Adams-Bashforth method".)
(b) Is the method zero-stable? Is the method convergent?
5. Prove the following (Jacobi) identity:

$$
\sum_{k=-\infty}^{\infty} e^{-k^{2} t} \frac{e^{i k x}}{\sqrt{2 \pi}}=\sum_{k=-\infty}^{\infty} \frac{1}{\sqrt{2 t}} e^{-\frac{(x-2 \pi k)^{2}}{4 t}} \text { for } t>0
$$

(Hint: Both sides are periodic functions of x.)
In particular, $\sum_{k=-\infty}^{\infty} e^{-k^{2} t}=\sqrt{\frac{\pi}{t}}\left(1+\sum_{|k| \neq 0} e^{-\frac{\pi^{2} k^{2}}{t}}\right)$.
6. The Radon (or X-ray) transform of a smooth function with compact support on $\mathbb{R}^{2}, f \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ is defined as follows: For any line $L_{t, \varphi}=\left\{x \in \mathbb{R}^{2}:\left\langle x, e^{i \varphi}\right\rangle=t\right\}$

$$
R(t, \varphi)=\int_{L} f=\int_{-\infty}^{\infty} f\left(t e^{i \varphi}+s e^{i\left(\varphi+\frac{\pi}{2}\right)}\right) d s
$$

(a) Suppose two functions $f, g \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ have the same Radon transforms. Show that $f=g$.
(b) Prove the inversion formula $f(x)=\frac{1}{2 i} \int_{S^{1}} R_{t}\left(\left\langle x, e^{i \varphi}\right\rangle, \varphi\right) d \varphi$.
7. (a) Let

$$
\begin{aligned}
& l^{2}=\left\{a=\left(a_{1}, a_{2}, \cdots, a_{k}, \cdots\right) \mid \sum_{k=1}^{+\infty} a_{k}^{2}<+\infty\right\} \text { and } \\
& h^{2}=\left\{a=\left(a_{1}, a_{2}, \cdots, a_{k}, \cdots\right) \mid \sum_{k=1}^{+\infty} k^{2} a_{k}^{2}<+\infty\right\} .
\end{aligned}
$$

Show that $h^{2} \subset l^{2}$ is a compact embedding, namely, that $I: h^{2} \rightarrow l^{2}$, $I(a)=a$ is a compact operator.
(b) Is the above operator invertible? Justify your answer.
8. (a) Find all C^{2} solutions to the Laplace equation in \mathbb{R}^{2}

$$
u_{t t}+u_{x x}=t x
$$

satisfying

$$
\lim _{|x|+|t| \rightarrow \infty} \frac{u(x, t)}{|x|^{5}+|t|^{5}}=0 .
$$

(b) Can one have non-polynomial solutions to the wave equation in \mathbb{R}^{2}

$$
u_{t t}-u_{x x}=x t
$$

satisfying the same growth

$$
\lim _{|x|+|t| \rightarrow \infty} \frac{u(x, t)}{|x|^{5}+|t|^{5}}=0 ?
$$

