Linear Analysis Prelim Exam

Autumn 2013

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Notation:

- \mathbb{R} (or \mathbb{C}) denotes the field of real (or complex) numbers, and \mathbb{R}^n (or \mathbb{C}^n) denotes the vector space of *n*-tuples of real (or complex) numbers.
- $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$) denotes the space of $m \times n$ matrices with real (or complex) scalars.
- $\mathcal{S}(\mathbb{R}^n)$ denotes the space of Schwartz-class functions on \mathbb{R}^n .
- For a vector $v \in \mathbb{R}^n$ or \mathbb{C}^n , |v| denotes the Euclidean norm $\left(\sum_{j=1}^n |v_j|^2\right)^{1/2}$.
- **1.** a) Show that the expression

$$v(\phi) = \lim_{N \to \infty} \sum_{\substack{n = -N \\ n \neq 0}}^{N} n^{-1} \phi(n^{-1}), \qquad \phi \in C_c^{\infty}(\mathbb{R}),$$

defines a distribution on \mathbb{R} ; that is, $v \in \mathcal{D}'(\mathbb{R})$.

b) Show that there is no constant C such that the following holds for all $\phi \in C_c^{\infty}(\mathbb{R})$:

$$|v(\phi)| \le C \sup_{x} |\phi(x)|.$$

- c) Find an integrable function f(x) on \mathbb{R} so that $\partial f = v$ as distributions; carefully justify your answer.
- **2.** Consider the differential equation $\partial_t u(t, x) = \partial_x^3 u(t, x)$ on the space \mathbb{R}^2 with variables (t, x).
 - a) Given $f(x) \in \mathcal{S}(\mathbb{R})$, construct a solution $u \in C^{\infty}(\mathbb{R}^2)$ satisfying

$$\partial_t u(t,x) = \partial_x^3 u(t,x), \qquad u(0,x) = f(x),$$

and such that, for each $t \in \mathbb{R}$, the function $x \to u(t, x)$ belongs to $\mathcal{S}(\mathbb{R})$.

b) If t_n is a sequence converging to 0, show that $u(t_n, x)$ converges to f(x) in the topology on $\mathcal{S}(\mathbb{R})$.

- **3.** Let $D \subset \mathbb{R}^2$ be the disc |(x, y)| < 1, and $L^2(D)$ the Hilbert space of square integrable complex-valued functions on D with respect to the usual Lebesgue measure dx dy.
 - a) Let z = x + iy, and show that the set of functions $\{1, z, z^2, \ldots\}$ form an orthogonal set. Find constants c_n such that $\{c_0, c_1z, c_2z^2 \ldots\}$ is an orthonormal set.
 - b) Let $\mathcal{H} \subset L^2(D)$ denote the closure of the subspace spanned by $\{z^n\}|_{n=0}^{\infty}$. Show that the projection of a given $f \in L^2(D)$ onto \mathcal{H} can be written as a series $\sum_{n=0}^{\infty} a_n z^n$ which converges in $L^2(D)$. Show in addition that this series converges, uniformly on sets |(x, y)| < r for each r < 1, to a continuous function on D. [Remark: Standard results from complex analysis would then show that this continuous function is holomorphic on D. You do *not* have to show this here.]
 - c) Let T denote the anti-derivative operation on \mathcal{H} , defined by

$$T(a_0 + a_1 z + a_2 z^2 + \dots) = a_0 z + a_1 \frac{z^2}{2} + a_2 \frac{z^3}{3} + \dots$$

Show that T is a compact map from \mathcal{H} to \mathcal{H} , and find its spectrum.

4. Let A be a real $m \times n$ matrix (with $m \ge n$) of rank r < n, and let $b \in \mathbb{R}^m$. Define S_b to be the set of all solutions $x \in \mathbb{R}^n$ of the least-squares problem

$$\min_{x \in \mathbb{D}^n} |b - Ax|.$$

Let $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0 = \sigma_{r+1} = \cdots = \sigma_n$ be the singular values of A, and let

$$A = U\Sigma V^T$$

be the singular value decompositon (SVD) of A, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and Σ is the $m \times n$ matrix whose diagonal entries are $\sigma_1, \ldots, \sigma_n$ and whose off-diagonal entries are zero.

a) Let Σ^{\dagger} be the $n \times m$ matrix whose diagonal entries are $1/\sigma_1, 1/\sigma_2, \ldots, 1/\sigma_r, 0, \ldots, 0$ and whose off-diagonal entries are zero. Show that

$$x_* = V \Sigma^{\dagger} U^T b$$

is in S_b , and in addition, that it is the unique element in S_b of smallest norm.

- b) Given (in addition to $b \in \mathbb{R}^m$) an $x_0 \in \mathbb{R}^n$, let x_{0*} be the closest element in S_b to x_0 . Express x_{0*} in terms of b, x_0 , and the SVD of A.
- **5.** Let $A \in \mathbb{C}^{n \times n}$, and let $\gamma = \max \{ Re(\lambda) : \lambda \text{ is in the spectrum of } A \}$.

Consider the initial-value problem

$$\frac{dy}{dt} = Ay \quad \text{for } t \ge 0,$$

$$y(0) = y_0,$$

where $y : [0, \infty) \to \mathbb{C}^n$. Show that there exists a constant C such that, for any $y_0 \in \mathbb{C}^n$ and for all $t \ge 0$, the solution y(t) of the initial-value problem above satisfies

$$|y(t)| \le C (1 + t^{n-1}) e^{\gamma t} |y_0|.$$

6. Let ℓ^2 be the Banach space of all complex sequences $\{x_1, x_2, \ldots\}$ for which $\sum_{k=1}^{\infty} |x_k|^2 < \infty$, with norm

$$||x|| = \left(\sum_{k=1}^{\infty} |x_k|^2\right)^{1/2}$$

a) Construct a bounded linear operator $L : \ell^2 \to \ell^2$ for which

$$||L|| \equiv \sup_{\{x \in \ell^2 : ||x|| \neq 0\}} \frac{||Lx||}{||x||} = 1,$$

but such that for any sequence $x \in \ell^2$ except the zero sequence, ||Lx|| < ||x||.

- b) Can an operator L as in part (a) have closed range? Either construct an example or prove that no such operator with closed range exists.
- c) Can an operator L as in part (a) be compact? Either construct an example or prove that no such compact operator exists.
- 7. Let $A \in \mathbb{C}^{n \times n}$ and suppose $\lambda = 1$ is *not* in the spectrum of A. Construct two different matrices $B \in \mathbb{C}^{n \times n}$ for which

$$B^2 - 2B + A = 0.$$

8. Suppose $\psi(h, t, x)$ is real-valued, bounded, continuous in h, t, and x, and uniformly Lipschitz in x on $[0, h_0] \times [a, b] \times \mathbb{R}^n$ for some $h_0 > 0$. Let $f(t, x) = \psi(0, t, x)$, and let x(t) be the solution of the initial-value problem $x'(t) = f(t, x), x(a) = x_a$ on [a, b]. For each $h \in (0, \min(h_0, b - a)]$, let $x_0(h) = x_a$, let $t_i(h) = a + ih$ for $0 \le i \le (b - a)/h$, and approximate the solution of the IVP with the one step method

$$x_{i+1}(h) = x_i(h) + h\psi(h, t_i(h), x_i(h)), \text{ for } 0 \le i \le \frac{b-a}{h} - 1.$$

Prove that

$$\lim_{h \to 0+} \left[\max_{0 \le i \le (b-a)/h} |x(t_i(h)) - x_i(h)| \right] = 0.$$