Linear Analysis Prelim Exam

Autumn 2013

Do as many of the eight problems as you can. Four completely correct solutions will be a pass; a few complete solutions will count more than many partial solutions. Always carefully justify your answers. If you skip a step or omit some details in a proof, point out the gap and, if possible, indicate what would be required to fill it in.

Notation:

- \mathbb{R} (or \mathbb{C}) denotes the field of real (or complex) numbers, and $\mathbb{R}^{n}\left(\right.$ or $\left.\mathbb{C}^{n}\right)$ denotes the vector space of n-tuples of real (or complex) numbers.
- $\mathbb{R}^{m \times n}$ (or $\mathbb{C}^{m \times n}$) denotes the space of $m \times n$ matrices with real (or complex) scalars.
- $\mathcal{S}\left(\mathbb{R}^{n}\right)$ denotes the space of Schwartz-class functions on \mathbb{R}^{n}.
- For a vector $v \in \mathbb{R}^{n}$ or $\mathbb{C}^{n},|v|$ denotes the Euclidean norm $\left(\sum_{j=1}^{n}\left|v_{j}\right|^{2}\right)^{1 / 2}$.

1. a) Show that the expression

$$
v(\phi)=\lim _{N \rightarrow \infty} \sum_{\substack{n=-N \\ n \neq 0}}^{N} n^{-1} \phi\left(n^{-1}\right), \quad \phi \in C_{c}^{\infty}(\mathbb{R}),
$$

defines a distribution on \mathbb{R}; that is, $v \in \mathcal{D}^{\prime}(\mathbb{R})$.
b) Show that there is no constant C such that the following holds for all $\phi \in C_{c}^{\infty}(\mathbb{R})$:

$$
|v(\phi)| \leq C \sup _{x}|\phi(x)| .
$$

c) Find an integrable function $f(x)$ on \mathbb{R} so that $\partial f=v$ as distributions; carefully justify your answer.
2. Consider the differential equation $\partial_{t} u(t, x)=\partial_{x}^{3} u(t, x)$ on the space \mathbb{R}^{2} with variables (t, x).
a) Given $f(x) \in \mathcal{S}(\mathbb{R})$, construct a solution $u \in C^{\infty}\left(\mathbb{R}^{2}\right)$ satisfying

$$
\partial_{t} u(t, x)=\partial_{x}^{3} u(t, x), \quad u(0, x)=f(x),
$$

and such that, for each $t \in \mathbb{R}$, the function $x \rightarrow u(t, x)$ belongs to $\mathcal{S}(\mathbb{R})$.
b) If t_{n} is a sequence converging to 0 , show that $u\left(t_{n}, x\right)$ converges to $f(x)$ in the topology on $\mathcal{S}(\mathbb{R})$.
3. Let $D \subset \mathbb{R}^{2}$ be the disc $|(x, y)|<1$, and $L^{2}(D)$ the Hilbert space of square integrable complex-valued functions on D with respect to the usual Lebesgue measure $d x d y$.
a) Let $z=x+i y$, and show that the set of functions $\left\{1, z, z^{2}, \ldots\right\}$ form an orthogonal set. Find constants c_{n} such that $\left\{c_{0}, c_{1} z, c_{2} z^{2} \ldots\right\}$ is an orthonormal set.
b) Let $\mathcal{H} \subset L^{2}(D)$ denote the closure of the subspace spanned by $\left.\left\{z^{n}\right\}\right|_{n=0} ^{\infty}$. Show that the projection of a given $f \in L^{2}(D)$ onto \mathcal{H} can be written as a series $\sum_{n=0}^{\infty} a_{n} z^{n}$ which converges in $L^{2}(D)$. Show in addition that this series converges, uniformly on sets $|(x, y)|<r$ for each $r<1$, to a continuous function on D.
[Remark: Standard results from complex analysis would then show that this continuous function is holomorphic on D. You do not have to show this here.]
c) Let T denote the anti-derivative operation on \mathcal{H}, defined by

$$
T\left(a_{0}+a_{1} z+a_{2} z^{2}+\cdots\right)=a_{0} z+a_{1} \frac{z^{2}}{2}+a_{2} \frac{z^{3}}{3}+\cdots
$$

Show that T is a compact map from \mathcal{H} to \mathcal{H}, and find its spectrum.
4. Let A be a real $m \times n$ matrix (with $m \geq n$) of rank $r<n$, and let $b \in \mathbb{R}^{m}$. Define S_{b} to be the set of all solutions $x \in \mathbb{R}^{n}$ of the least-squares problem

$$
\min _{x \in \mathbb{R}^{n}}|b-A x| .
$$

Let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0=\sigma_{r+1}=\cdots=\sigma_{n}$ be the singular values of A, and let

$$
A=U \Sigma V^{T}
$$

be the singular value decompositon (SVD) of A, where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, and Σ is the $m \times n$ matrix whose diagonal entries are $\sigma_{1}, \ldots, \sigma_{n}$ and whose off-diagonal entries are zero.
a) Let Σ^{\dagger} be the $n \times m$ matrix whose diagonal entries are $1 / \sigma_{1}, 1 / \sigma_{2}, \ldots, 1 / \sigma_{r}, 0$, $\ldots, 0$ and whose off-diagonal entries are zero. Show that

$$
x_{*}=V \Sigma^{\dagger} U^{T} b
$$

is in S_{b}, and in addition, that it is the unique element in S_{b} of smallest norm.
b) Given (in addition to $b \in \mathbb{R}^{m}$) an $x_{0} \in \mathbb{R}^{n}$, let $x_{0 *}$ be the closest element in S_{b} to x_{0}. Express $x_{0 *}$ in terms of b, x_{0}, and the SVD of A.
5. Let $A \in \mathbb{C}^{n \times n}$, and let $\gamma=\max \{\operatorname{Re}(\lambda): \lambda$ is in the spectrum of $A\}$.

Consider the initial-value problem

$$
\begin{aligned}
\frac{d y}{d t} & =A y \quad \text { for } t \geq 0 \\
y(0) & =y_{0}
\end{aligned}
$$

where $y:[0, \infty) \rightarrow \mathbb{C}^{n}$. Show that there exists a constant C such that, for any $y_{0} \in \mathbb{C}^{n}$ and for all $t \geq 0$, the solution $y(t)$ of the initial-value problem above satisfies

$$
|y(t)| \leq C\left(1+t^{n-1}\right) e^{\gamma t}\left|y_{0}\right|
$$

6. Let ℓ^{2} be the Banach space of all complex sequences $\left\{x_{1}, x_{2}, \ldots\right\}$ for which $\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}<\infty$, with norm

$$
\|x\|=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{2}\right)^{1 / 2}
$$

a) Construct a bounded linear operator $L: \ell^{2} \rightarrow \ell^{2}$ for which

$$
\|L\| \equiv \sup _{\left\{x \in \ell^{2}:\|x\| \neq 0\right\}} \frac{\|L x\|}{\|x\|}=1
$$

but such that for any sequence $x \in \ell^{2}$ except the zero sequence, $\|L x\|<\|x\|$.
b) Can an operator L as in part (a) have closed range? Either construct an example or prove that no such operator with closed range exists.
c) Can an operator L as in part (a) be compact? Either construct an example or prove that no such compact operator exists.
7. Let $A \in \mathbb{C}^{n \times n}$ and suppose $\lambda=1$ is not in the spectrum of A. Construct two different matrices $B \in \mathbb{C}^{n \times n}$ for which

$$
B^{2}-2 B+A=0
$$

8. Suppose $\psi(h, t, x)$ is real-valued, bounded, continuous in h, t, and x, and uniformly Lipschitz in x on $\left[0, h_{0}\right] \times[a, b] \times \mathbb{R}^{n}$ for some $h_{0}>0$. Let $f(t, x)=\psi(0, t, x)$, and let $x(t)$ be the solution of the initial-value problem $x^{\prime}(t)=f(t, x), x(a)=x_{a}$ on $[a, b]$. For each $h \in\left(0, \min \left(h_{0}, b-a\right)\right]$, let $x_{0}(h)=x_{a}$, let $t_{i}(h)=a+i h$ for $0 \leq i \leq(b-a) / h$, and approximate the solution of the IVP with the one step method

$$
x_{i+1}(h)=x_{i}(h)+h \psi\left(h, t_{i}(h), x_{i}(h)\right), \text { for } 0 \leq i \leq \frac{b-a}{h}-1 .
$$

Prove that

$$
\lim _{h \rightarrow 0+}\left[\max _{0 \leq i \leq(b-a) / h}\left|x\left(t_{i}(h)\right)-x_{i}(h)\right|\right]=0
$$

