
LINEAR ANALYSIS PRELIM EXAM

Autumn 2014

• Do as many of the eight problems as you can.
• Four completely correct solutions will be a pass;
• A few complete solutions will count more than many partial solu-

tions. Always carefully justify your answers.
• If you skip a step or omit some details in a proof, point out the gap

and, if possible, indicate what would be required to fill it in.

Notation

• Rn×m denotes the n×m real matrices.
• Cn×m denotes the n×m complex matrices.
• Sn denotes the real symmetric matrices
• H ∈ Sn is said to be positive definite (H > 0) if xTHx > 0 for all
x ∈ Rn with x 6= 0.
• H ∈ Sn is said to be positive semi–definite (H ≥ 0) if xTHx ≥ 0 for

all x ∈ Rn.
• The singular values of a matrix A are the eigenvalues of the matrix√

A∗A.
• S (Rn) denotes the Schwartz space of smooth rapidly decaying func-

tions.
• S ′(Rn) denotes the space of tempered distributions.
• A function f ∈ L1(Rn) acts as a tempered distribution on φ ∈ S by

〈f, φ〉 =

∫
Rn

f(x)φ(x)dnx

• H2(R2) is the closure of C∞0 (R2) in the norm,

||u||2H2(R2) := ||u||2L2 + ||∆u||2L2

• In R2, ∆ = ∂2

∂x2 + ∂2

∂y2
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1. Let A ∈ Rm×n, W ∈ Rm×m, and V ∈ Rn×n with W and V symmetric.
(a) Show that V is positive definite on kerA, i.e.,

uTV u > 0 whenever u 6= 0 and u ∈ kerA,

if and only if there is a κ > 0 such that the matrix V + κATA is
positive definite.

(b) Suppose V is positive semidefinite on kerA, i.e.,

uTV u ≥ 0 whenever u ∈ kerA.

Show that the matrix M :=

[
V AT

A 0

]
is nonsingular if and only if V

is positive definite on kerA and the rank of A is m.
(c) Show that the matrix

T :=

[
V AT

A W

]
is positive definite if and only if the matrices V and W −AV −1AT are
positive definite.

2. Let A ∈ Cn×n and ε > 0. Show that the three sets A,B, C defined below
are equal.

A = {λ ∈ C |λ ∈ Λ(X), ‖A−X‖ ≤ ε} ,
B =

{
λ ∈ C

∣∣ ‖(A− λI)−1‖ ≥ ε−1 or (A− λI) is singular.
}
,

C = {λ ∈ C |σmin(A− λI) ≤ ε} ,
where the we have used the operator 2-norm and σmin(A−λI) is the smallest
singular value of (A− λI).

3. Let m(x) ∈ C1([0, 1]) and λ ∈ C. Consider the boundary value problem(
d

dx
+m(x)− λ

)
u = f

u(0) = u(1)

Let G(λ) denote the solution operator as a mapping from f ∈ L2(0, 1) to
u ∈ L2(0, 1).
(a) Find an explicit formula for G(λ)f .
(b) Find an explicit formula for the eigenvalues of the boundary value

problem (i.e. the values of λ for which G(λ) does not exist).
(c) Prove that, if λ is not an eigenvalue, G(λ) is a compact operator which

maps L2(0, 1) to itself.
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4. Suppose U : R → R is C1. If we interpret U as the potential energy of
a particle at position x, then −U ′(x) (minus the derivative of U) is the
force acting on the particle, so (for a particle with mass 1) Newton’s law of
motion is the second order ODE

d2x

dt2
= −U ′(x(t)) . (1)

For example, for a simple harmonic oscillator (spring), we could have
U(x) = 1

2kx
2 for some k > 0.

(a) Rewrite equation (1) as a first-order system.
(b) The kinetic energy of a particle is 1

2 (ẋ)2, so the total energy is

E(t) =
1

2
(ẋ(t))2 + U(x(t)) .

where the dot ˙ = d
dt means derivative with respect to time. Show

that if x solves (1), then E(t) is constant, i.e., energy is conserved.
(c) Suppose that U is bounded from below (that is, there exists C ∈ R

such that U(x) ≥ C for all x ∈ R). Prove that every solution of (1)
exists for all time (t→ ±∞).

(d) Show that if U(x) = −x4, then the solution of (1) satisfying the initial
conditions x(0) = 0, ẋ(0) = 1 blows up in finite time.

5. Consider the map

Mf =

∫ 1

0

|x− y|f(y)dy

mapping L2(0, 1) into continuous (but not necessarily bounded) functions
on the real line.
(a) Show that the image of the unit ball in L2(0, 1) are uniformly Lipschitz

continuous; i.e.

|Mf(a)−Mf(b)| ≤ C|a− b|
where C depends only on ||f ||L2(0,1).

(b) Find the codimension 2 subspace of L2(0, 1) that maps into L2(R).
Hint: On this subspace, Mf is identically zero outside (0, 1).

(c) Show that M is a compact and injective operator from this subspace
into L2(R).
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6. Prove the existence of a solution u ∈ H2(R2) that satisfies

∆u− u = F (x, u)

under the hypotheses that the F ∈ C∞(R2 × R1) satisfies

||F (x, 0)||L2 is sufficiently small

|F (x, a)− F (x, b)| ≤ (|a|+ |b|) |a− b| for all real x, a, b

Hint: Use Fourier transform to estimate the H2 norm of the solution u
to the linear PDE ∆u − u = f(x) in in terms of the L2 norm of f ; then
define a mapping from a ball in H2 to itself, and show its a contraction if
||F (x, 0)||L2 is small enough. The fact that the supremum (L∞(R2)) norm
is bounded by a constant times the H2(R2) norm may be useful. This fact
is a form of the Sobolev embedding theorem.

7. The two definitions below describe how the tempered distributions, rP and
rD, act on φ ∈ S . Prove that the two definitions define the same tempered
distribution.

〈rP , φ〉 := lim
ε↓0

∫
|x|>ε

1

x
φ(x)dx

〈rD, φ〉 := 〈∂x log(|x|), φ〉
Part of the problem is to prove that each does indeed define a tempered

distribution.

8. (a) Prove that the linear map

Tφ = φ(|x|2) x ∈ R2

maps S (R1) to S (R2).
(b) By duality, T induces a map

T ∗ : S ′(R2)→ S ′(R1)

Every f ∈ S (R2) defines a distribution in S ′(R2). For such a distri-
bution, T ∗f is also a function in S (R1) . Find an explicit expression
for the function T ∗f (i.e. write a formula for its value at every t ∈ R,
not just a formula for its action as a distribution). Hint: Use polar
coordinates


